首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4410篇
  免费   371篇
  国内免费   2篇
  4783篇
  2024年   5篇
  2023年   29篇
  2022年   75篇
  2021年   151篇
  2020年   71篇
  2019年   76篇
  2018年   114篇
  2017年   93篇
  2016年   152篇
  2015年   238篇
  2014年   280篇
  2013年   325篇
  2012年   408篇
  2011年   362篇
  2010年   249篇
  2009年   204篇
  2008年   272篇
  2007年   249篇
  2006年   220篇
  2005年   177篇
  2004年   196篇
  2003年   188篇
  2002年   161篇
  2001年   29篇
  2000年   27篇
  1999年   45篇
  1998年   38篇
  1997年   29篇
  1996年   22篇
  1995年   21篇
  1994年   23篇
  1993年   26篇
  1992年   17篇
  1991年   18篇
  1990年   19篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   12篇
  1983年   10篇
  1982年   15篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   11篇
  1977年   8篇
  1974年   9篇
  1965年   5篇
排序方式: 共有4783条查询结果,搜索用时 0 毫秒
91.
Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.  相似文献   
92.
A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02–74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats.  相似文献   
93.
94.
Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.  相似文献   
95.
96.
Human disturbance from tourism and other non-consumptive activities in protected areas may be stressful to wildlife. Animals may move away in space or time to avoid human interaction. For species of particular conservation concern, such as Baird's tapirs (Tapirus bairdii) and jaguars (Panthera onca), a better understanding of how they respond to different levels and types of disturbance is needed in order to manage human visitation to parks in ways that minimize negative outcomes for wildlife. We describe the overlap in activity patterns of tapirs, jaguars, and humans at logged and unlogged sites and at places with low versus high human visitation using camera survey data from protected areas of NW Belize, 2013–2016. Tapirs were nocturnal in all study sites, with > 80% of all tapir detections occurring between 1900 hr and 0500 hr. Their activity patterns were not different in unlogged versus logged sites and did not change with increased human traffic. Jaguars were cathemeral across sites but had more nocturnal activity at the site with the most human impact. Activity pattern overlap between tapirs and jaguars did not differ significantly between logged and unlogged sites, nor between areas with low and high human activity. Human traffic increased from 2013 to 2016 at most of the study locations. In conclusion, this camera trap dataset suggests that non-consumptive human disturbance does not alter the activity patterns of tapirs and jaguars in protected areas lacking hunting pressure.  相似文献   
97.
98.
In target tissues, cortisol is metabolised by two 11β-hydroxysteroid dehydrogenase (11βHSD) isoenzymes, namely 11βHSD1 and 11βHSD2, both of which are co-expressed in the boar testis and reproductive tract. The present study has assessed whether cortisol-cortisone metabolism in boar testis and caput epididymidis can be regulated via the gonadotrophin-cAMP signalling pathway. 11βHSD activities were measured by using a radiometric conversion assay in static tissue culture. In both testis and caput epididymidis, the net reduction of cortisone but not the net oxidation of cortisol, was significantly decreased by luteinising hormone (by 53?±?20% and 45?±?9%, respectively, P?<?0.05), forskolin (by 60?±?7% and 57?±?9%, respectively, P?<?0.01) and 8-bromo-cAMP (by 54?±?4% and 64?±?1%, respectively, P?<?0.01). This suppression of 11-ketosteroid reductase activity in the boar testis by forskolin could be attenuated by the protein kinase A (PKA) inhibitor, H89. Hence, within the boar testis and the caput epididymidis, the local actions of glucocorticoids are modulated by gonadotrophin-cAMP-PKA signalling via their selective effects on the reductase activity of 11βHSD.  相似文献   
99.
100.
Fibroblast growth factor (FGF)-induced growth arrest of chondrocytes is a unique cell type-specific response which contrasts with the proliferative response of most cell types and underlies several genetic skeletal disorders caused by activating FGF receptor (FGFR) mutations. We have shown that one of the earliest key events in FGF-induced growth arrest is dephosphorylation of the retinoblastoma protein (Rb) family member p107 by protein phosphatase 2A (PP2A), a ubiquitously expressed multisubunit phosphatase. In this report, we show that the PP2A-B55α holoenzyme (PP2A containing the B55α subunit) is responsible for this phenomenon. Only the B55α (55-kDa regulatory subunit, alpha isoform) regulatory subunit of PP2A was able to bind p107, and this interaction was induced by FGF in chondrocytes but not in other cell types. Small interfering RNA (siRNA)-mediated knockdown of B55α prevented p107 dephosphorylation and FGF-induced growth arrest of RCS (rat chondrosarcoma) chondrocytes. Importantly, the B55α subunit bound with higher affinity to dephosphorylated p107. Since the p107 region interacting with B55α is also the site of cyclin-dependent kinase (CDK) binding, B55α association may also prevent p107 phosphorylation by CDKs. FGF treatment induces dephosphorylation of the B55α subunit itself on several serine residues that drastically increases the affinity of B55α for the PP2A A/C dimer and p107. Together these observations suggest a novel mechanism of p107 dephosphorylation mediated by activation of PP2A through B55α dephosphorylation. This mechanism might be a general signal transduction pathway used by PP2A to initiate cell cycle arrest when required by external signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号