首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4409篇
  免费   371篇
  国内免费   2篇
  4782篇
  2024年   5篇
  2023年   29篇
  2022年   75篇
  2021年   151篇
  2020年   71篇
  2019年   76篇
  2018年   114篇
  2017年   93篇
  2016年   152篇
  2015年   238篇
  2014年   281篇
  2013年   326篇
  2012年   410篇
  2011年   362篇
  2010年   249篇
  2009年   204篇
  2008年   272篇
  2007年   249篇
  2006年   220篇
  2005年   177篇
  2004年   196篇
  2003年   188篇
  2002年   161篇
  2001年   28篇
  2000年   25篇
  1999年   43篇
  1998年   38篇
  1997年   29篇
  1996年   22篇
  1995年   21篇
  1994年   23篇
  1993年   26篇
  1992年   17篇
  1991年   18篇
  1990年   19篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   12篇
  1983年   10篇
  1982年   15篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   11篇
  1977年   8篇
  1974年   9篇
  1965年   5篇
排序方式: 共有4782条查询结果,搜索用时 15 毫秒
91.
Molecular Biology Reports - A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various...  相似文献   
92.
Pseudomonas putida DOT‐T1E‐18 is a strain deficient in the major antibiotic efflux pump (TtgABC) that exhibits an overall increased susceptibility to a wide range of drugs when compared with the wild‐type strain. We used this strain as a platform to search for microbes able to produce antibiotics that inhibit growth. A collection of 2400 isolates from soil, sediments and water was generated and a drop assay developed to identify, via growth inhibition halos, strains that prevent the growth of DOT‐T1E‐18 on solid Luria–Bertani plates. In this study, 35 different isolates that produced known and unknown antibiotics were identified. The most potent inhibitor of DOT‐T1E‐18 growth was an isolate named 250J that, through multi‐locus sequence analysis, was identified as a Pseudomonas sp. strain. Culture supernatants of 250J contain four different xantholysins that prevent growth of Gram‐positive bacteria, Gram‐negative and fungi. Two of the xantholysins were produced in higher concentrations and purified. Xantholysin A was effective against Bacillus, Lysinibacillus and Rhodococcus strains, and the effect against these microbes was enhanced when used in combination with other antibiotics such as ampicillin, gentamicin and kanamycin. Xantholysin C was also efficient against Gram‐positive bacteria and showed an interesting antimicrobial effect against Pseudomonas strains, and a synergistic inhibitory effect with ampicillin, chloramphenicol and gentamicin.  相似文献   
93.
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.  相似文献   
94.
95.
96.
Damage-associated molecular patterns, including mitochondrial DNA (mtDNA) are released during hemorrhage resulting in the development of endotheliopathy. Tranexamic acid (TXA), an antifibrinolytic drug used in hemorrhaging patients, enhances their survival despite the lack of a comprehensive understanding of its cellular mechanisms of action. The present study is aimed to elucidate these mechanisms, with a focus on mitochondria. We found that TXA inhibits the release of endogenous mtDNA from granulocytes and endothelial cells. Furthermore, TXA attenuates the loss of the endothelial monolayer integrity induced by exogenous mtDNA. Using the Seahorse XF technology, it was demonstrated that TXA strongly stimulates mitochondrial respiration. Studies using Mitotracker dye, cells derived from mito-QC mice, and the ActivSignal IPAD assay, indicate that TXA stimulates biogenesis of mitochondria and inhibits mitophagy. These findings open the potential for improvement of the strategies of TXA applications in trauma patients and the development of more efficient TXA derivatives.  相似文献   
97.
Various nonlinear regenerative responses, including plateau potentials and bistable repetitive firing modes, have been observed in motoneurons under certain conditions. Our simulation results support the hypothesis that these responses are due to plateau-generating currents in the dendrites, consistent with a major role for a noninactivating calcium L-type current as suggested by experiments. Bistability as observed in the soma of low- and higher-frequency spiking or, under TTX, of near resting and depolarized plateau potentials, occurs because the dendrites can be in a near resting or depolarized stable steady state. We formulate and study a two-compartment minimal model of a motoneuron that segregates currents for fast spiking into a soma-like compartment and currents responsible for plateau potentials into a dendrite-like compartment. Current flows between compartments through a coupling conductance, mimicking electrotonic spread. We use bifurcation techniques to illuminate how the coupling strength affects somatic behavior. We look closely at the case of weak coupling strength to gain insight into the development of bistable patterns. Robust somatic bistability depends on the electrical separation since it occurs only for weak to moderate coupling conductance. We also illustrate that hysteresis of the two spiking states is a natural consequence of the plateau behavior in the dendrite compartment.  相似文献   
98.
This study examined the effects of 2 manipulations-a brief, regular period of human contact and diet-on the behavior of dogs confined in a public animal shelter. A behavioral battery designed to assess reactions to novel situations, and a test of responsiveness to an unfamiliar human were administered both prior to (pretest) and immediately following (posttest) the 8-week intervention period. Overall, the regular periods of increased human contact together with a diet that contained augmented levels of digestible protein, fat, calories, and animal-derived ingredients reduced signs of behavioral reactivity from pretest to posttest. In some cases, the comparison diet appeared more effective, but only for dogs receiving minimal human interaction. The results indicate that a combination of human interaction and high quality diet may positively affect the behavior of dogs in animal shelters.  相似文献   
99.
The role of PKC in the regulation of store-operated Ca2+ entry (SOCE) is rather controversial. Here, we used Ca2+-imaging, biochemical, pharmacological, and molecular techniques to test if Ca2+-independent PLA2beta (iPLA2beta), one of the transducers of the signal from depleted stores to plasma membrane channels, may be a target for the complex regulation of SOCE by PKC and diacylglycerol (DAG) in rabbit aortic smooth muscle cells (SMCs). We found that the inhibition of PKC with chelerythrine resulted in significant inhibition of thapsigargin (TG)-induced SOCE in proliferating SMCs. Activation of PKC by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) caused a significant depletion of intracellular Ca2+ stores and triggered Ca2+ influx that was similar to TG-induced SOCE. OAG and TG both produced a PKC-dependent activation of iPLA2beta and Ca2+ entry that were absent in SMCs in which iPLA2beta was inhibited by a specific chiral enantiomer of bromoenol lactone (S-BEL). Moreover, we found that PKC regulates TG- and OAG-induced Ca2+ entry only in proliferating SMCs, which correlates with the expression of the specific PKC-epsilon isoform. Molecular downregulation of PKC-epsilon impaired TG- and OAG-induced Ca2+ influx in proliferating SMCs but had no effect in confluent SMCs. Our results demonstrate that DAG (or OAG) can affect SOCE via multiple mechanisms, which may involve the depletion of Ca2+ stores as well as direct PKC-epsilon-dependent activation of iPLA2beta, resulting in a complex regulation of SOCE in proliferating and confluent SMCs.  相似文献   
100.
Suggestions that novel, non‐food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape‐scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait‐based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号