首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4999篇
  免费   417篇
  国内免费   2篇
  5418篇
  2023年   32篇
  2022年   80篇
  2021年   154篇
  2020年   78篇
  2019年   82篇
  2018年   126篇
  2017年   102篇
  2016年   168篇
  2015年   263篇
  2014年   302篇
  2013年   361篇
  2012年   450篇
  2011年   397篇
  2010年   264篇
  2009年   220篇
  2008年   297篇
  2007年   276篇
  2006年   247篇
  2005年   196篇
  2004年   215篇
  2003年   216篇
  2002年   173篇
  2001年   41篇
  2000年   40篇
  1999年   53篇
  1998年   44篇
  1997年   38篇
  1996年   30篇
  1995年   26篇
  1994年   27篇
  1993年   32篇
  1992年   28篇
  1991年   22篇
  1990年   32篇
  1989年   25篇
  1988年   18篇
  1987年   14篇
  1986年   20篇
  1985年   16篇
  1984年   21篇
  1983年   15篇
  1982年   21篇
  1981年   18篇
  1980年   15篇
  1979年   15篇
  1978年   12篇
  1977年   11篇
  1974年   13篇
  1973年   9篇
  1968年   10篇
排序方式: 共有5418条查询结果,搜索用时 15 毫秒
981.
982.
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.  相似文献   
983.
Cl(-) channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. Although a cystic fibrosis transmembrane conductance regulator has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP](i), an alternate Cl(-) secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increasing [Ca(2+)](i). The molecular identity of this Ca(2+)-activated Cl(-) channel is unknown. The present studies in human, mouse, and rat BECs provide evidence that TMEM16A is the operative channel and contributes to Ca(2+)-activated Cl(-) secretion in response to extracellular nucleotides. Furthermore, Cl(-) currents measured from BECs isolated from distinct areas of intrahepatic bile ducts revealed important functional differences. Large BECs, but not small BECs, exhibit cAMP-stimulated Cl(-) currents. However, both large and small BECs express TMEM16A and exhibit Ca(2+)-activated Cl(-) efflux in response to extracellular nucleotides. Incubation of polarized BEC monolayers with IL-4 increased TMEM16A protein expression, membrane localization, and transepithelial secretion (I(sc)). These studies represent the first molecular identification of an alternate, noncystic fibrosis transmembrane conductance regulator, Cl(-) channel in BECs and suggest that TMEM16A may be a potential target to modulate bile formation in the treatment of cholestatic liver disorders.  相似文献   
984.
The gastric peptide ghrelin promotes energy storage, appetite, and food intake. Nutrient intake strongly suppresses circulating ghrelin via molecular mechanisms possibly involving insulin and gastrointestinal hormones. On the basis of the growing evidence that glucose-dependent insulinotropic polypeptide (GIP) is involved in the control of fuel metabolism, we hypothesized that GIP and/or insulin, directly or via changes in plasma metabolites, might affect circulating ghrelin. Fourteen obese subjects were infused with GIP (2.0 pmol·kg(-1)·min(-1)) or placebo in the fasting state during either euglycemic hyperinsulinemic (EC) or hyperglycemic hyperinsulinemic clamps (HC). Apart from analysis of plasma ghrelin and insulin levels, GC-TOF/MS analysis was applied to create a hormone-metabolite network for each experiment. The GIP and insulin effects on circulating ghrelin were analyzed within the framework of those networks. In the HC, ghrelin levels decreased in the absence (19.2% vs. baseline, P = 0.028) as well as in the presence of GIP (33.8%, P = 0.018). Ghrelin levels were significantly lower during HC with GIP than with placebo, despite insulin levels not differing significantly. In the GIP network combining data on GIP-infusion, EC+GIP and HC+GIP experiments, ghrelin was integrated into hormone-metabolite networks through a connection to a group of long-chain fatty acids. In contrast, ghrelin was excluded from the network of experiments without GIP. GIP decreased circulating ghrelin and might have affected the ghrelin system via modification of long-chain fatty acid pools. These observations were independent of insulin and offer potential mechanistic underpinnings for the involvement of GIP in systemic control of energy metabolism.  相似文献   
985.
BRCT tandem domains, found in many proteins involved in DNA damage checkpoint and DNA repair pathways, were recently shown to be phosphopeptide binding motifs. Using solution nuclear magnetic resonance (NMR) spectroscopy and mutational analysis, we have characterized the interaction of BRCA1-BRCT domains with a phosphoserine-containing peptide derived from the DNA repair helicase BACH1. We show that a phenylalanine in the +3 position from the phosphoserine of BACH1 is bound to a conserved hydrophobic pocket formed between the two BRCT domains and that recognition of the phosphate group is mediated by lysine and serine side chains from the amino-terminal BRCT domain. Mutations that prevent phosphopeptide binding abolish BRCA1 function in DNA damage-induced checkpoint control. Our NMR data also reveal a dynamic interaction between BRCA1-BRCT and BACH1, where the bound phosphopeptide exists as an equilibrium of two conformations and where BRCA1-BRCT undergoes a transition to a more rigid conformation upon peptide binding.  相似文献   
986.
Multinucleate cells are widespread in nature, yet the mechanism by which cells fuse their plasma membranes is poorly understood. To identify animal fusogens, we performed new screens for mutations that abolish cell fusion within tissues of C. elegans throughout development. We identified the gene eff-1, which is expressed as cells acquire fusion competence and encodes a novel integral membrane protein. EFF-1 sequence motifs suggest physicochemical actions that could cause adjacent bilayers to fuse. Mutations in the extracellular domain of EFF-1 completely block epithelial cell membrane fusion without affecting other perfusion events such as cell generation, patterning, differentiation, and adhesion. Thus, EFF-1 is a key component in the mechanism of cell fusion, a process essential to normal animal development.  相似文献   
987.
Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1T for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis.  相似文献   
988.

Introduction

Vitamin D deficiency is common in the elderly, especially among institutionalized and/or hip fracture patients. However, there are few population studies on the prevalence of this deficiency in the general population over 64 years in our environment. The aim of this study was to determine the prevalence of vitamin D deficiency in an urban population cohort of over 64 years, and analyze its relationship with sociodemographic, climatic, and health factors.

Material and methods

Cross-sectional study from «Peñagrande cohort», a population-based cohort consisting of people over 64 years. We determined 25-hydroxyvitamin D levels, and recorded sociodemographic data (age, sex, marital status, education, socioeconomic status), season of measurement and health variables (comorbidity, obesity, malnutrition, renal failure, cognitive impairment, vitamin D supplements, and disability).

Results

A total of 468 individuals with a mean age of 76.0 years (SD: 7.7) were included, of which 53.4% were women. The mean value of vitamin D was 20.3 ± 11.7 ng/mL. The large majority (86.3%, 95% CI: 83.0-89.5) had a vitamin insufficiency (≤ 30 ng/ml), and 35.2% (95% CI: 30.8-39.7) showed severe vitamin deficiency (≤ 15 ng/ml). Vitamin insufficiency increases linearly with age (OR 1.06; 95% CI: 1.01-1.11), and was associated with low socioeconomic status (OR 3.29; 95% CI: 1.55-6.95). Severe vitamin D deficiency increases with age (OR 1.06; 95% CI: 1.02-1.09), female gender (OR 1.80; 95% CI: 1.18-2.75) and with cognitive impairment (OR 1.71; 95% CI: 1.04-2.83).

Conclusion

The prevalence of vitamin D deficiency in people over 65 years of age in our community is high. It would be advisable to determine the vitamin D values in the high risk elderly in order to introduce measures of pharmacological supplementation in those with inadequate levels.  相似文献   
989.
To the best of our knowledge enantioselective chromatographic protocols on β-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained β-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid β-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.  相似文献   
990.
Wild‐type green fluorescent protein (GFP) folds on a time scale of minutes. The slow step in folding is a cis–trans peptide bond isomerization. The only conserved cis‐peptide bond in the native GFP structure, at P89, was remodeled by the insertion of two residues, followed by iterative energy minimization and side chain design. The engineered GFP was synthesized and found to fold faster and more efficiently than its template protein, recovering 50% more of its fluorescence upon refolding. The slow phase of folding is faster and smaller in amplitude, and hysteresis in refolding has been eliminated. The elimination of a previously reported kinetically trapped state in refolding suggests that X‐P89 is trans in the trapped state. A 2.55 Å resolution crystal structure revealed that the new variant contains only trans‐peptide bonds, as designed. This is the first instance of a computationally remodeled fluorescent protein that folds faster and more efficiently than wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号