首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4409篇
  免费   368篇
  国内免费   2篇
  4779篇
  2024年   5篇
  2023年   29篇
  2022年   75篇
  2021年   151篇
  2020年   71篇
  2019年   76篇
  2018年   114篇
  2017年   93篇
  2016年   152篇
  2015年   238篇
  2014年   280篇
  2013年   325篇
  2012年   408篇
  2011年   362篇
  2010年   249篇
  2009年   204篇
  2008年   272篇
  2007年   249篇
  2006年   220篇
  2005年   177篇
  2004年   196篇
  2003年   188篇
  2002年   161篇
  2001年   28篇
  2000年   25篇
  1999年   43篇
  1998年   38篇
  1997年   29篇
  1996年   22篇
  1995年   21篇
  1994年   23篇
  1993年   26篇
  1992年   17篇
  1991年   18篇
  1990年   19篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   12篇
  1983年   10篇
  1982年   15篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   11篇
  1977年   8篇
  1974年   9篇
  1965年   5篇
排序方式: 共有4779条查询结果,搜索用时 12 毫秒
21.
22.
We experimentally examined the effects of pollen composition on progeny fitness in the self-compatible, annual plant Chamaecrista fasciculata. Plants were hand-pollinated with single- and mixed-donor pollen loads and with various combinations of self- and outcross pollen. For outcrosses, pollen was obtained from two plants at each of two different distances within the same subpopulation as the female parent. Seedlings from all crosses were planted back into the maternal site. For single-donor crosses, seed weight, progeny fruit production, and overall relative fitness were significantly higher for outcross, as compared to self-treatments, but we found no significant differences among outcross sources. For all fitness components, the value observed for crosses derived from mixed loads was intermediate between the values for the singledonor crosses that comprised the mixed load. In a parallel experiment, an analysis of seed paternity of progeny which resulted from pollen mixtures of self- and outcross pollen showed random paternity in two maternal families, and significant excess of outcross in one family. Our results demonstrate that mixed pollen loads do not confer a fitness advantage to the maternal plant in this species, and that the fitness observed for progeny derived from mixed loads is generally consistent with a hypothesis of random paternity.  相似文献   
23.
Pyridoxal 5′-phosphate is the active form of vitamin B6 and its deficiency is directly related with several human disorders, which make human pyridoxal kinase (hPLK) an important pharmacologic target. In spite of this, a carefully kinetic characterization of hPLK including the main species that regulates the enzymatic activity is at date missing. Here we analyse the catalytic and regulatory mechanisms of hPLK as a function of a precise determination of the species involved in metal–nucleotide equilibriums and describe new regulatory mechanisms for this enzyme. hPLK activity is supported by several metals, being Zn2+ the most effective, although the magnitude of the effect observed is highly dependent on the relative concentrations of metal and nucleotide used. The true substrate for the reaction catalyzed by hPLK is the metal nucleotide complex, while ATP4? and HATP3? did not affect the activity. The enzyme presents substrate inhibition by both pyridoxal (PL) and ZnATP2?, although the latter behaves as a weakly inhibitor. Our study also established, for the first time, a dual role for free Zn2+; as an activator at low concentrations (19 μM optimal concentration) and as a potent inhibitor with a IC50 of 37 μM. These results highlighted the importance of an accurate estimation of the actual concentration of the species involved in metal–nucleotide equilibriums in order to obtain reliable values for the kinetic parameters, and for determine the true regulators of the PLK activity. They also help to explain the dissimilar kinetic parameters reported in the literature for this enzyme.  相似文献   
24.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   
25.
Plant mitogen-activated protein kinases (MAPKs) are involved in important processes, including stress signaling and development. In a functional yeast screen, we identified mutations that render Arabidopsis thaliana MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity toward known activators and substrates. As a proof-of-concept, Arabidopsis MAPK4 (MPK4) function in plant immunity was investigated. In agreement with the phenotype of mpk4 mutants, CA-MPK4 plants were compromised in pathogen-induced salicylic acid accumulation and disease resistance. MPK4 activity was found to negatively regulate pathogen-associated molecular pattern-induced reactive oxygen species production but had no impact on callose deposition, indicating that CA-MPK4 allows discriminating between processes regulated by MPK4 activity from processes indirectly affected by mpk4 mutation. Finally, MPK4 activity was also found to compromise effector-triggered immunity conditioned by the Toll Interleukin-1 Receptor–nucleotide binding (NB)–Leu-rich repeat (LRR) receptors RPS4 and RPP4 but not by the coiled coil–NB-LRR receptors RPM1 and RPS2. Overall, these data reveal important insights on how MPK4 regulates plant defenses and establishes that CA-MAPKs offer a powerful tool to analyze the function of plant MAPK pathways.  相似文献   
26.
27.

Objective

Olfaction is impaired in chronic rhinosinusitis (CRS). The study has two aims: (1) to determine whether changes in cation concentration occur in the olfactory mucus of mice with CRS, which may affect chemo-electrical transduction, (2) and to examine whether these alterations are physiologically significant in humans.

Study Design

Animal study in mice and translational study in humans.

Methods

Inflammation was induced by sensitization and chronic exposure of 16 C57BL/6 mice to Aspergillus fumigatus. The control group included 16 untreated mice. Ion-selective microelectrodes were used to measure free cation concentrations in the olfactory mucus of 8 mice from each treatment group, while the remaining mice were sacrificed for histology. To validate the findings in the animal model, olfactory threshold was measured in 11 healthy human participants using Sniffin’ Sticks before and after nasal irrigation with solutions that were composed of either of the cation concentrations.

Results

In 8 mice, olfactory mucus of chronically inflamed mice had lower [Na+] (84.8±4.45 mM versus 93.73±3.06 mM, p = 0.02), and higher [K+] (7.2±0.65 mM versus 5.7±0.20 mM, p = 0.04) than controls. No difference existed in [Ca2+] (0.50±0.12 mM versus 0.54±0.06 mM, p = 0.39). In humans, rinsing with solutions replicating ion concentrations of the mouse mucosa with chronic inflammation caused a significant elevation in the median olfactory threshold (9.0 to 4.8, p = 0.003) but not with the control solution (8.3 to 7.8, p = 0.75).

Conclusion

Chronic inflammation elevates potassium and lowers sodium ion concentration in mice olfactory mucus. Nasal irrigation with a corresponding solution induced olfactory threshold shift in humans.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号