首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   18篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1996年   4篇
  1995年   3篇
  1992年   1篇
  1984年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   4篇
  1972年   2篇
  1970年   3篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1961年   3篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1953年   1篇
  1950年   1篇
  1949年   1篇
排序方式: 共有114条查询结果,搜索用时 31 毫秒
101.
Ras leads an important signaling pathway that is deregulated in neurofibromatosis type 1 and malignant peripheral nerve sheath tumor (MPNST). In this study, we show that overactivation of Ras and many of its downstream effectors occurred in only a fraction of MPNST cell lines. RalA, however, was overactivated in all MPNST cells and tumor samples compared to nontransformed Schwann cells. Silencing Ral or inhibiting it with a dominant-negative Ral (Ral S28N) caused a significant reduction in proliferation, invasiveness, and in vivo tumorigenicity of MPNST cells. Silencing Ral also reduced the expression of epithelial mesenchymal transition markers. Expression of the NF1-GTPase-related domain (NF1-GRD) diminished the levels of Ral activation, implicating a role for neurofibromin in regulating RalA activation. NF1-GRD treatment caused a significant decrease in proliferation, invasiveness, and cell cycle progression, but cell death increased. We propose Ral overactivation as a novel cell signaling abnormality in MPNST that leads to important biological outcomes with translational ramifications.The Ras family of guanine-nucleotide bound proteins exerts a fundamental role in cell biology and constitutes an important area of cancer research due to its significant involvement in the development and progression of malignancies (8, 10, 17, 18, 32). Ras-like (Ral) proteins are crucial members of this family and have been shown to play a pivotal role in human tumors (7, 28, 41, 66, 70). Because Ral guanine nucleotide exchange factors (Ral-GEFs) are direct effectors of Ras, the Ral signaling pathway has been traditionally considered a Ras-effector pathway. Activation of Ras (in resemblance to Ral) is regulated by two classes of proteins: Ras-GEFs (e.g., SOS) and Ras- GTPase activating proteins (Ras-GAPs such as neurofibromin). The latter induces hydrolysis of Ras from the active (GTP) form to the inactive (GDP) form (13). Ral-GEFs include two main groups: the proteins that are stimulated by Ras because of their carboxy-terminal Ras binding domain (RalGDS, RGL1, and RGL2) and the proteins that are activated by substrates of PI3K through a pleckstrin homology domain on their C-terminal (RALGPS1 and RALGPS2) (19). Although highly similar to Ras, Ral proteins (RalA and RalB) involve a series of distinctly different effectors that influence gene expression and translation through interaction with ZO-1-associated nucleic acid binding protein (ZONAB) and RalA binding protein 1 (RalBP1) (11, 23, 33). RalB directly interacts with the SEC5 subunit of exocyst to facilitate the host defense response (48, 58).In addition to overactivation of GEFs, inactivation of GAPs is another mechanism for overactivation of GTP-bound proteins. The lack of neurofibromin (encoded by NF1 on human chromosome 17q11.2), a Ras-GAP protein, is the main molecular event in neurofibromatosis type 1 (NF-1), an autosomal-dominant human genetic disease occurring in approximately 1 in 2,500 to 3,500 births (22, 27, 42). One of the main tumor-causing effects of inactivating mutations in the tumor suppressor NF1 gene is postulated to be the subsequent activation of Ras (3, 29, 53, 57, 69). With two main functional domains, SEC14 and Ras-GAP, neurofibromin is best known for its Ras-GAP function. Although the yeast SEC14p is shown to be involved in regulating intracellular proteins and lipid trafficking, the function of its homologous domain in neurofibromin is unknown (49, 62). Although neurofibromas are the most common tumors in NF-1, 10% of patients with plexiform develop malignant peripheral nerve sheath tumors (MPNSTs), which are typically high grade and often fatal (21, 34, 65).The molecular events involved in the malignant transformation of benign neurofibromas to MPNST are poorly defined. Usually arising in the third through sixth decades of life, these tumors are composed of tightly packed hyperchromatic spindle-shaped cells with frequent mitotic figures. Inactivation of both copies of the NF1 gene has been demonstrated in benign human neurofibromas and shown to cause tumors in murine models (56). Loss of heterozygosity of NF1 and p53 has frequently been observed in human MPNST (35, 47, 54). Recombinant mouse strains (NP mice), which harbor inactivated Nf1 and p53 alleles (cis-Nf1+/−:p53+/−), demonstrate the cumulative effects of loss of both Nf1 and p53 genes in the etiology of MPNST (14, 68).In the present study, we show that while both Ras activation and activation of a series of its downstream effector pathways are observed in a fraction of MPNST cells, RalA is activated globally in all studied mouse and human MPNST cells and tumor samples. Our results also explain the involvement of this signaling molecule in a series of key biological functions of MPNST cells, as shown in a variety of in vitro assays and an in vivo model of MPNST. Such information may play a role in designing novel therapies for treatment of MPNST or other tumors with overactivation of the Ral pathway.  相似文献   
102.
Abstract: 125I-α-Bungarotoxin (α-BGT) was used to characterize the binding sites for cholinergic ligands in lobster walking leg nerve membranes. The toxin binding component has been visualized histochemically on the external surfaces of intact axons and isolated axonal membrane fragments. Binding of α-BGT to nerve membrane preparations was demonstrated to be saturable and highly reversible ( K Dapp± 1.7 ± 0.32 × 10-7 M; B max± 249 ± 46 pmol/mg protein) at pH 7.8, 10 mM-Tris buffer. Binding showed a marked sensitivity to ionic strength that was attributable to the competitive effects of inorganic cations (particularly Ca2+ and Mg2+) in the medium. 125I-α-BGT binding could be inhibited by cholinergic drugs (atropine ≅ d -tubocurarine > nicotine > carbamylcholine ≅ choline) and local anesthetics (procaine > tetracaine = lidocaine), but was unaffected by other neuroactive compounds tested (e.g., tetrodotoxin, 4-aminopyridine, quinuclidinyl benzilate, octopamine, bicuculline, haloperidol, ouabain). The pharmacological sensitivity of toxin binding resembles that of nicotine binding to axonal membranes, but differs significantly from nicotinic cholinergic receptors described in neuromuscular junctions, fish electric organs, sympathetic ganglia, and the CNS. The possible physiological relevance of the axonal cholinergic binding component and its relationship to α-BGT binding sites in other tissues are discussed.  相似文献   
103.
Neurofibromatosis type-1 (NF1) patients suffer from cutaneous and subcutaneous neurofibromas (CNF) and large plexiform neurofibromas (PNF). Whole gene deletions of the NF1 gene can cause a more severe phenotype compared to smaller intragenic changes. Two distinct groups of NF1 whole gene deletions are type-1 deletions and atypical deletions. Our aim was to assess volumes and averaged annual growth-rates of CNF and PNF in patients with NF1 whole gene deletions and to compare these with NF1 patients without large deletions of the NF1 gene.We retrospectively evaluated 140 whole-body MR examinations of 38 patients with NF1 whole gene deletions (type-1 group: n = 27/atypical group n = 11) and an age- and sex matched collective of 38 NF1-patients. Age-dependent subgroups were created (0–18 vs >18 years). Sixty-four patients received follow-up MRI examinations (NF1whole gene deletion n = 32/control group n = 32). Whole-body tumor-volumes were semi-automatically assessed (MedX, V3.42). Tumor volumes and averaged annual growth-rates were compared.Median tumor-burden was significantly higher in the type-1 group (418ml; IQR 77 – 950ml, p = 0.012) but not in the atypical group (356ml;IQR 140–1190ml, p = 0.099) when compared to the controls (49ml; IQR 11–691ml). Averaged annual growth rates were significantly higher in both the type-1 group (14%/year; IQR 45–36%/year, p = 0.004) and atypical group (11%/year; IQR 5–23%/year, p = 0.014) compared to the controls (4%/year; IQR1–8%/year). Averaged annual growth rates were significantly higher in pediatric patients with type-1 deletions (21%/year) compared with adult patients (8%/year, p = 0.014) and also compared with pediatric patients without large deletions of the NF1 gene (3.3%/year, p = 0.0015).NF1 whole gene deletions cause a more severe phenotype of NF1 with higher tumor burden and higher growth-rates compared to NF1 patients without large deletions of the NF1 gene. In particular, pediatric patients with type-1 deletions display a pronounced tumor growth.  相似文献   
104.
Neurofibromatosis 2 (NF2) is an autosomal inherited disorder that predisposes carriers to nervous system tumors. To examine genotype-phenotype correlations in NF2, we performed mutation analyses and gadolinium-enhanced magnetic resonance imaging of the head and full spine in 59 unrelated NF2 patients. In patients with vestibular schwannomas (VSs) or identified NF2 mutations, the mild phenotype was defined as <2 other intracranial tumors and ≤ 4 spinal tumors, and the severe phenotype as either ≥ 2 other intracranial tumors or > 4 spinal tumors. Nineteen mutations were found in 20 (34%) of the patients and were distributed in 12 of the 17 exons of the NF2 gene, including intron-exon boundaries. Seven mutations were frameshift, six were nonsense, four were splice site, two were missense, and one was a 3-bp in frame deletion. The nonsense mutations included one codon 57 and two codon 262 C→T transitions in CpG dinucleotides. The frameshift and nonsense NF2 mutations occurred primarily in patients with severe phenotypes. The two missense mutations occurred in patients with mild phenotypes, and three of the four splice site mutations occurred in families with both mild and severe phenotypes. Truncating NF2 mutations are usually associated with severe phenotypes, but the association of some mutations with mild and severe phenotypes indicates that NF2 expression is influenced by stochastic, epigenetic, or environmental factors. Received: 4 July 1996  相似文献   
105.
Neurofibromatosis 2 (NF2) is a clinically variable autosomal dominant disorder, caused by mutations in the NF2 tumor suppressor gene on chromosome 22q12, that predisposes to nervous system tumors and ocular abnormalities. To assess intrafamilial phenotypic variability, we performed mutation analysis and clinical assessment on two multigeneration NF2 families with five patients and seven asymptomatic first-degree relatives of patients. One family had a point mutation of agCC→ggCC at position 1447–2 at the exon 13/14 boundary predicted to lead to an altered splice acceptor sequence and exon deletion. The other family had an insertion of 2 base pairs (TC) at position 761 in exon 8, leading to a frameshift. Both mild and severe phenotypes occurred in each family, indicating that phenotypic variability in NF2 can be caused by factors other than NF2 mutations. Genetic counseling of NF2 families should include the possibility that presymptomatic NF2 mutation carriers can develop a different phenotype than previously diagnosed patients. Received: 4 January 1996 / Revised: 26 March 1996  相似文献   
106.
The attachment of 125I-α-bungarotoxin (BgTx) which is reportedly bound exclusively to “nicotinic” acetylcholine receptors, as well as 3H-atropine and 3H-3-quinuclidinyl benzilate (QNB), which reportedly bind exclusively to “muscarinic” receptors, was measured in isolated lobster axon plasma membrane fragments and in the soluble axonal protein fraction. 125I-α-BgTx binding was also measured in lysolecithin-solubilized fragments. Binding assays were adapted for these studies and are described in detail. High affinity, saturable binding of all three ligands to membrane fragments was observed, as well as binding of BgTx to a macromolecule present in both the soluble fraction and the membrane fragments. These experiments provide the first evidence for the very tight binding of both “nicotinic” and “muscarinic” ligands in peripheral nerve.  相似文献   
107.
108.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder caused by mutations in the NF1 gene located on chromosome 17q11.2. NF1 is fully penetrant, meaning that every individual carrying the mutation exhibits symptoms of the disease, although with some considerably variable expressivity. NF1 is characterised by the eponymous neurofibromas, which are benign Schwann cell tumours. Among the other main characteristic features of NF1 are pigmentary anomalies such as café-au-lait spots, axillary or inguinal freckling, and Lisch nodules. NF1 is a member of the class of hereditary cancer syndromes, and patients with NF1 are at increased risk of developing specific NF1-associated tumours. These tumours are caused by the biallelic inactivation of the NF1 tumour suppressor gene, resulting in aberrant Ras regulation. Over the last few years, significant progress has been made in identifying and managing the clinical symptoms of NF1 as well as in developing novel therapeutic approaches.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号