首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7388篇
  免费   538篇
  国内免费   17篇
  7943篇
  2023年   36篇
  2022年   81篇
  2021年   155篇
  2020年   84篇
  2019年   97篇
  2018年   127篇
  2017年   99篇
  2016年   203篇
  2015年   321篇
  2014年   341篇
  2013年   424篇
  2012年   536篇
  2011年   565篇
  2010年   364篇
  2009年   288篇
  2008年   410篇
  2007年   441篇
  2006年   410篇
  2005年   355篇
  2004年   320篇
  2003年   324篇
  2002年   317篇
  2001年   63篇
  2000年   49篇
  1999年   73篇
  1998年   78篇
  1997年   63篇
  1996年   53篇
  1995年   62篇
  1994年   46篇
  1993年   55篇
  1992年   51篇
  1991年   22篇
  1990年   27篇
  1989年   23篇
  1988年   33篇
  1987年   24篇
  1986年   27篇
  1985年   36篇
  1984年   51篇
  1983年   35篇
  1982年   51篇
  1981年   45篇
  1980年   49篇
  1979年   23篇
  1978年   34篇
  1977年   30篇
  1976年   25篇
  1975年   21篇
  1973年   21篇
排序方式: 共有7943条查询结果,搜索用时 15 毫秒
101.
Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees.  相似文献   
102.
Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO), KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3), the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells.  相似文献   
103.
Postharvest processing (PHP) is used to reduce levels of Vibrio vulnificus in oysters, but process validation is labor-intensive and expensive. Therefore, quantitative PCR was evaluated as a rapid confirmation method for most-probable-number enumeration (QPCR-MPN) of V. vulnificus bacteria in PHP oysters. QPCR-MPN showed excellent correlation (R2 = 0.97) with standard MPN and increased assay sensitivity and efficiency.  相似文献   
104.
Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1), which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension.  相似文献   
105.
The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which are crucial in the activation of human effector memory T cells (T(EM)); selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. The critical motif on the toxin for potassium channel blockade consists of neighboring lysine and tyrosine residues. Because this motif is sufficient for activity, an ShK analogue was designed based on D-amino acids. D-allo-ShK has a structure essentially identical with that of ShK and is resistant to proteolysis. It blocked Kv1.3 with K(d) 36 nm (2,800-fold lower affinity than ShK), was 2-fold selective for Kv1.3 over Kv1.1, and was inactive against other K(+) channels tested. D-allo-ShK inhibited human T(EM) cell proliferation at 100-fold higher concentration than ShK. Its circulating half-life was only slightly longer than that of ShK, implying that renal clearance is the major determinant of its plasma levels. D-allo-ShK did not bind to the closed state of the channel, unlike ShK. Models of D-allo-ShK bound to Kv1.3 show that it can block the pore as effectively as ShK but makes different interactions with the vestibule, some of which are less favorable than for native ShK. The finding that an all-D analogue of a polypeptide toxin retains biological activity and selectivity is highly unusual. Being resistant to proteolysis and nonantigenic, this analogue should be useful in K(+) channel studies; all-d analogues with improved Kv1.3 potency and specificity may have therapeutic advantages.  相似文献   
106.
107.
Patch-clamp recordings from ventricular myocytes of neonatal rats identified ionic channels that open in response to membrane stretch caused by negative pressures (1 to 6 cm Hg) in the electrode. The stretch response, consisting of markedly increased channel opening frequency, was maintained, with some variability, during long (>40 seconds) stretch applications. The channels have a conductance averaging 120 pS in isotonic KCl, have a mean reversal potential 31 mV depolarized from resting membrane potential, and do not require external Ca++ for activation. The channels appear to be relatively non-selective for cations. Since they are gated by physiological levels of tension, stretch-activated channels may represent, a cellular control system wherein beat-to-beat tension and/or osmotic balance modulate a portion of membrane conductance.Abbreviations SACs stretch-activated channels - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid  相似文献   
108.
A computer system DIROM for oligonucleotide-directed mutagenesisand artificial gene design has been designed for better experimentalplanning and control. DIROM permits searching for optimal oligonucleotideswith respect to certain important parameters, namely sufficientenergy of oligonucleotide-target hybridization, the secondarystructure of oligonuc-tide and target DNA, the presence of alternatebinding sites in the target DNA and terminal G/C pairs. It canalso be used to plan polymerase chain reaction experiments,for optimal primer selection, in sequencing, etc. DIROM enablesone to search for both existing and potential restriction sites,to perform vector + target sequence construction. The systemconsists of a set of original algorithms that formalize theempirical knowledge of oligonucleotide action as primers.  相似文献   
109.
Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT) and contribute to HIV amplification. Primary, human genital epithelial cells (GECs) were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120), both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10), which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR)-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT.  相似文献   
110.
Optimal conditions for enzymatic synthesis of biodiesel from palm oil and ethanol were determined with lipase from Pseudomonas fluorescens immobilized on epoxy polysiloxane–polyvinyl alcohol hybrid composite under a microwave heating system. The main goal was to reduce the reaction time preliminarily established by a process of conventional heating. A full factorial design assessed the influence of ethanol-to-palm oil (8:1–16:1) molar ratio and temperature (43–57 °C) on the transesterification yield. Microwave irradiations varying from 8 to 15 W were set up according to reaction temperature. Under optimal conditions (8:1 ethanol-to-oil molar ratio at 43 °C), 97.56 % of the fatty acids present in the palm oil were converted into ethyl esters in a 12-h reaction, corresponding to a productivity of 64.2 mg ethyl esters g?1 h?1. This represents a sixfold increase from the process carried out under conventional heating, thus proving to be a potential tool for enhancing biochemical modification of oils and fats. In general, advantages of the new process include: (1) microwaves speed up the enzyme-catalyzed reactions; (2) there are no destructive effects on the enzyme properties, such as stability and substrate specificity, and (3) the microwave assistance allows the entire reaction volume to be heated uniformly. These bring benefits of a low energy demand and a faster conversion of palm oil into biodiesel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号