首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1278459篇
  免费   106184篇
  国内免费   1557篇
  2021年   17924篇
  2020年   12737篇
  2019年   16363篇
  2018年   18070篇
  2017年   16855篇
  2016年   28407篇
  2015年   42652篇
  2014年   50605篇
  2013年   77025篇
  2012年   34795篇
  2011年   23217篇
  2010年   43715篇
  2009年   45216篇
  2008年   21871篇
  2007年   19782篇
  2006年   25031篇
  2005年   26426篇
  2004年   25267篇
  2003年   22907篇
  2002年   21040篇
  2001年   29143篇
  2000年   26379篇
  1999年   27814篇
  1998年   24818篇
  1997年   24539篇
  1996年   24145篇
  1995年   22333篇
  1994年   22136篇
  1993年   21161篇
  1992年   24108篇
  1991年   22474篇
  1990年   21458篇
  1989年   22350篇
  1988年   20481篇
  1987年   19392篇
  1986年   18362篇
  1985年   20541篇
  1984年   20831篇
  1983年   18469篇
  1982年   19412篇
  1981年   18885篇
  1980年   17656篇
  1979年   16669篇
  1978年   16246篇
  1977年   15740篇
  1976年   15111篇
  1975年   14442篇
  1974年   14736篇
  1973年   15212篇
  1972年   12650篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
996.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   
997.
Glycine and GABA play the role of inhibitory transmitters in the lamprey spinal cord. The mechanisms of action of both amino acids to the membrane receptors producing the postsynaptic inhibition as well as role and mechanism of GABA action producing the presynaptic inhibition are considered in this paper. The data concerned with morphological substrates of both type inhibitions are discussed.  相似文献   
998.
M Nakasako  M Odaka  M Yohda  N Dohmae  K Takio  N Kamiya  I Endo 《Biochemistry》1999,38(31):9887-9898
The crystal structure analysis of the Fe-type nitrile hydratase from Rhodococcus sp. N-771 revealed the unique structure of the enzyme composed of the alpha- and beta-subunits and the unprecedented structure of the non-heme iron active center [Nagashima, S., et al. (1998) Nat. Struct. Biol. 5, 347-351]. A number of hydration water molecules were identified both in the interior and at the exterior of the enzyme. The study presented here investigated the roles of the hydration water molecules in stabilizing the tertiary and the quaternary structures of the enzyme, based on the crystal structure and the results from a laser light scattering experiment for the enzyme in solution. Seventy-six hydration water molecules between the two subunits significantly contribute to the alphabeta heterodimer formation by making up the surface shape, forming extensive networks of hydrogen bonds, and moderating the surface charge of the beta-subunit. In particular, 20 hydration water molecules form the extensive networks of hydrogen bonds stabilizing the unique structure of the active center. The amino acid residues hydrogen-bonded to those hydration water molecules are highly conserved among all known nitrile hydratases and even in the homologous enzyme, thiocyanate hydrolase, suggesting the structural conservation of the water molecules in the NHase family. The crystallographic asymmetric unit contained two heterodimers connected by 50 hydration water molecules. The heterotetramer formation in crystallization was clearly explained by the concentration-dependent aggregation state of NHase found in the light scattering measurement. The measurement proved that the dimer-tetramer equilibrium shifted toward the heterotetramer dominant state in the concentration range of 10(-2)-1.0 mg/mL. In the tetramer dominant state, 50 water molecules likely glue the two heterodimers together as observed in the crystal structure. Because NHase exhibits a high abundance in bacterial cells, the result suggests that the heterotetramer is physiologically relevant. In addition, it was revealed that the substrate specificity of this enzyme, recognizing small aliphatic substrates rather than aromatic ones, came from the narrowness of the entrance channel from the bulk solvent to the active center. This finding may give a clue for changing the substrate specificity of the enzyme. Under the crystallization condition described here, one 1,4-dioxane molecule plugged the channel. Through spectroscopic and crystallographic experiments, we found that the molecule prevented the dissociation of the endogenous NO molecule from the active center even when the crystal was exposed to light.  相似文献   
999.
1000.
Human chorionic gonadotropin (hCG) belongs to a family of heterodimeric glycoprotein hormones that share a common alpha-subunit and a hormone-specific beta-subunit. Among the gonadotropin beta-subunits, greater than 85% homology exists between lutropin (hLH)beta and hCGbeta in their first 114 amino acid residues. However, unlike hLHbeta, hCGbeta contains a 31-amino acid hydrophilic stretch at its carboxyl end (CTPbeta: C-terminal peptide). Although the crystal structure of deglycosylated hCG has been solved, the topography of CTPbeta remains unknown. In this study, we have attempted to define the topology of CTPbeta using mAb probes. We investigated three epitopes on hCGalpha, which are hidden in the hCGalphabeta dimer. However, these epitopes are not hidden in hLH, which has a similar subunit interface to that of hCG, but lacks CTPbeta. This suggested that these epitopes are not masked at the subunit interface of hLH or hCG. Hence, we hypothesized that, in the case of hCG, these epitopes are masked by the CTPbeta. Consistent with this view, several treatments of hCG that removed CTPbeta unmasked these epitopes and enhanced their reactivity with the corresponding mAbs. In order to localise the position of CTPbeta on the alpha-subunit, we used an epitope-mapping strategy [N. Venkatesh & G. S. Murthy (1997) J. Immunol. Methods 202, 173-182] based on differential susceptibility of epitopes to covalent modifications. This enabled us to predict the possible topography of CTPbeta. Further, we were also able to build a model of CTPbeta, completely independently of the epitope-mapping studies, using a homology-based modeling approach [S. Krishnaswamy, I. Lakshminarayanan & S. Bhattacharya (1995) Protein Sci. 4 (Suppl. 2), 86-97]. Results obtained from these two different approaches (epitope analysis and homology modeling) agree with each other and indicate that portions of CTPbeta are in contact with hCGalpha in the native hCG dimer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号