首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7357篇
  免费   536篇
  国内免费   14篇
  7907篇
  2023年   35篇
  2022年   81篇
  2021年   156篇
  2020年   85篇
  2019年   96篇
  2018年   127篇
  2017年   99篇
  2016年   202篇
  2015年   320篇
  2014年   339篇
  2013年   422篇
  2012年   525篇
  2011年   564篇
  2010年   361篇
  2009年   288篇
  2008年   409篇
  2007年   436篇
  2006年   409篇
  2005年   354篇
  2004年   319篇
  2003年   325篇
  2002年   313篇
  2001年   62篇
  2000年   46篇
  1999年   70篇
  1998年   77篇
  1997年   63篇
  1996年   53篇
  1995年   62篇
  1994年   46篇
  1993年   55篇
  1992年   51篇
  1991年   22篇
  1990年   27篇
  1989年   22篇
  1988年   33篇
  1987年   24篇
  1986年   27篇
  1985年   36篇
  1984年   51篇
  1983年   35篇
  1982年   53篇
  1981年   45篇
  1980年   50篇
  1979年   23篇
  1978年   34篇
  1977年   31篇
  1976年   25篇
  1975年   22篇
  1973年   21篇
排序方式: 共有7907条查询结果,搜索用时 15 毫秒
991.
992.
Inspiratory resistance induced by breathing through an impedance threshold device (ITD) reduces intrathoracic pressure and increases stroke volume (SV) in supine normovolemic humans. We hypothesized that breathing through an ITD would also be associated with a protection of SV and a subsequent increase in the tolerance to progressive central hypovolemia. Eight volunteers (5 men, 3 women) were instrumented to record ECG and beat-by-beat arterial pressure and SV (Finometer). Tolerance to progressive lower body negative pressure (LBNP) was assessed while subjects breathed against either 0 (sham ITD) or -7 cmH(2)O inspiratory resistance (active ITD); experiments were performed on separate days. Because the active ITD increased LBNP tolerance time from 2,014 +/- 106 to 2,259 +/- 138 s (P = 0.006), data were analyzed (time and frequency domains) under both conditions at the time at which cardiovascular collapse occurred during the sham experiment to determine the mechanisms underlying this protective effect. At this time point, arterial blood pressure, SV, and cardiac output were higher (P < or = 0.005) when breathing on the active ITD rather than the sham ITD, whereas indirect indicators of autonomic activity (low- and high-frequency oscillations of the R-to-R interval) were not altered. ITD breathing did not alter the transfer function between systolic arterial pressure and R-to-R interval, indicating that integrated baroreflex sensitivity was similar between the two conditions. These data show that breathing against inspiratory resistance increases tolerance to progressive central hypovolemia by better maintaining SV, cardiac output, and arterial blood pressures via primarily mechanical rather than neural mechanisms.  相似文献   
993.
Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.  相似文献   
994.
The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which are crucial in the activation of human effector memory T cells (T(EM)); selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. The critical motif on the toxin for potassium channel blockade consists of neighboring lysine and tyrosine residues. Because this motif is sufficient for activity, an ShK analogue was designed based on D-amino acids. D-allo-ShK has a structure essentially identical with that of ShK and is resistant to proteolysis. It blocked Kv1.3 with K(d) 36 nm (2,800-fold lower affinity than ShK), was 2-fold selective for Kv1.3 over Kv1.1, and was inactive against other K(+) channels tested. D-allo-ShK inhibited human T(EM) cell proliferation at 100-fold higher concentration than ShK. Its circulating half-life was only slightly longer than that of ShK, implying that renal clearance is the major determinant of its plasma levels. D-allo-ShK did not bind to the closed state of the channel, unlike ShK. Models of D-allo-ShK bound to Kv1.3 show that it can block the pore as effectively as ShK but makes different interactions with the vestibule, some of which are less favorable than for native ShK. The finding that an all-D analogue of a polypeptide toxin retains biological activity and selectivity is highly unusual. Being resistant to proteolysis and nonantigenic, this analogue should be useful in K(+) channel studies; all-d analogues with improved Kv1.3 potency and specificity may have therapeutic advantages.  相似文献   
995.
Eighteen green turtles Chelonia mydas recovered from the Atlantic and Gulf coasts of Florida and Tortuguero National Park, Costa Rica, were diagnosed with renal oxalosis by histopathological examination. Affected sea turtles included 14 adults and 4 immature animals, which comprised 26% (18/69) of green turtle necropsy cases available for review. Calcium oxalate deposition ranged from small to moderate amounts and was associated with granuloma formation and destruction of renal tubules. All affected turtles died from traumatic events or health problems unrelated to renal oxalosis; however, 1 immature turtle had notable associated renal injury. Crystal composition was confirmed by infrared and scanning electron microscopy and energy dispersive X-ray analysis. The source of calcium oxalate is unknown and is presumed to be of dietary origin.  相似文献   
996.
Melanocortin receptors are considered promising candidates for the treatment of behavioral and metabolic disorders ranging from obesity to anorexia and cachexia. These experiments examined the response of mice to peripheral injections of two compounds. PG932 is a derivative of SHU9119 which is non-selective antagonist of melanocortin-3 and melanocortin-4 receptors (Mc3r and Mc4r). PG946 is a derivative of a hybrid of alpha- and beta-MSH, and is a moderately selective Mc3r antagonist. SHU9119 increases food intake when administered intracerebroventricularly but is without effect when injected into the periphery. In contrast, PG932 was found to be highly effective at stimulating food intake when administered peripherally by intraperitoneal injection. The orexigenic effect of PG932 required functional Mc4r, suggesting that inhibition of this receptor is involved in the stimulation of food intake. PG946 did not significantly affect on feeding behavior. PG932 is thus a useful new compound for studies examining the regulation of appetite and energy balance, and may also prove useful for the treatment of cachectic conditions.  相似文献   
997.
As a protein evolves, not every part of the amino acid sequence has an equal probability of being deleted or for allowing insertions, because not every amino acid plays an equally important role in maintaining the protein structure. However, the most prevalent models in fold recognition methods treat every amino acid deletion and insertion as equally probable events. We have analyzed the alignment patterns for homologous and analogous sequences to determine patterns of insertion and deletion, and used that information to determine the statistics of insertions and deletions for different amino acids of a target sequence. We define these patterns as insertion/deletion (indel) frequency arrays (IFAs). By applying IFAs to the protein threading problem, we have been able to improve the alignment accuracy, especially for proteins with low sequence identity. We have also demonstrated that the application of this information can lead to an improvement in fold recognition.  相似文献   
998.
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.  相似文献   
999.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.  相似文献   
1000.
Pemphigus vulgaris (PV) is a life-threatening autoimmune disease characterized by oral mucosal erosions and epidermal blistering. The autoantibodies generated target the desmosomal cadherin desmoglein-3 (Dsg3). Previous studies demonstrate that upon PV IgG binding, Dsg3 is internalized and enters an endo-lysosomal pathway where it is degraded. To define the endocytic machinery involved in PV IgG-induced Dsg3 internalization, human keratinocytes were incubated with PV IgG, and various tools were used to perturb distinct endocytic pathways. The PV IgG.Dsg3 complex failed to colocalize with clathrin, and inhibitors of clathrin- and dynamin-dependent pathways had little or no effect on Dsg3 internalization. In contrast, cholesterol binding agents such as filipin and nystatin and the tyrosine kinase inhibitor genistein dramatically inhibited Dsg3 internalization. Furthermore, the Dsg3 cytoplasmic tail specified sensitivity to these inhibitors. Moreover, inhibition of Dsg3 endocytosis with genistein prevented disruption of desmosomes and loss of adhesion in the presence of PV IgG. Altogether, these results suggest that PV IgG-induced Dsg3 internalization is mediated through a clathrin- and dynamin-independent pathway and that Dsg3 endocytosis is tightly coupled to the pathogenic activity of PV IgG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号