首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7344篇
  免费   534篇
  国内免费   17篇
  7895篇
  2023年   36篇
  2022年   81篇
  2021年   155篇
  2020年   84篇
  2019年   96篇
  2018年   127篇
  2017年   99篇
  2016年   201篇
  2015年   319篇
  2014年   339篇
  2013年   419篇
  2012年   525篇
  2011年   564篇
  2010年   362篇
  2009年   288篇
  2008年   410篇
  2007年   436篇
  2006年   409篇
  2005年   354篇
  2004年   319篇
  2003年   324篇
  2002年   313篇
  2001年   62篇
  2000年   45篇
  1999年   70篇
  1998年   77篇
  1997年   63篇
  1996年   53篇
  1995年   62篇
  1994年   46篇
  1993年   53篇
  1992年   51篇
  1991年   22篇
  1990年   27篇
  1989年   22篇
  1988年   33篇
  1987年   24篇
  1986年   27篇
  1985年   36篇
  1984年   52篇
  1983年   35篇
  1982年   51篇
  1981年   45篇
  1980年   49篇
  1979年   23篇
  1978年   35篇
  1977年   30篇
  1976年   25篇
  1975年   21篇
  1973年   21篇
排序方式: 共有7895条查询结果,搜索用时 15 毫秒
61.
Split-thickness skin grafts remain central to the strategy of burn wound treatment. The dressing used to cover the donor wound site has a significant effect on healing parameters. The purpose of this study was to compare split-thickness skin graft donor site reepithelialization under Xeroform and Jelonet dressings. A dermatome was used to cut two consecutive strips of skin from 25 paired donor sites on the thigh, calf, or back of 19 participants. Standardization of the harvest method was achieved by using the same surgeon to harvest the compared skin graft strips, with attention to consistency of dermatome skin-thickness setting, downward pressure, and angle of dermatome approach. A strip of Xeroform or Jelonet was applied to one of each pair of wounds. Epidermal and dermal thickness was measured from biopsy specimens cut at the midpoint of each split-thickness graft strip. The day of final dressing separation was declared the day of complete donor reepithelialization (healing). The mean healing time for Xeroform and Jelonet was 10.4 +/- 2.6 days (n = 25) and 10.6 +/- 2.8 days (n = 25) (p = 0.76) at sites cut to a mean depth of 0.23 +/- 0.08 mm and 0.23 +/- 0.09 mm (p = 0.89), respectively. There was no correlation between graft thickness and healing time for sites dressed with Xeroform (r = 0.17) or Jelonet (r = 0.02). Donors sites reharvested 10 to 21 days after a prior harvest healed an average of 3.1 days earlier than virgin sites (8.4 +/- 1.6 versus 11.5 +/- 2.6 days, p < 0.001), although reharvested grafts were on average 0.05 mm thicker (p = 0.10). The mean thickness of reepithelialized donor-site epidermis (0.13 +/- 0.04 mm, n = 30) was found to be twice the thickness of virgin epidermis from the same sites (0.06 +/- 0.02 mm, n = 38, p < 0.001). Thirty-six grafts harvested with dermatomes set to cut 8/1000 inch (0.20 mm) deep ranged from 0.12 to 0.42 mm thick, with only eight of these grafts measuring within +/-10 percent of the desired thickness setting. Before donor dressing separation, Xeroform and Jelonet dressings were judged to be more comfortable by nine patients and one patient, respectively, whereas no difference was detected by six patients. The authors now use Xeroform as the preferred donor dressing.  相似文献   
62.
Photosynthesis Research - The oxygen-evolving complex (OEC) of photosystem II (PSII) cycles through redox intermediate states Si (i?=?0–4) during the photochemical oxidation of...  相似文献   
63.
64.
65.
The liver stages of malaria are clinically silent but have a central role in the Plasmodium life cycle. Liver stages of the parasite containing thousands of merozoites grow inside hepatocytes for several days without triggering an inflammatory response. We show here that Plasmodium uses a PEXEL/VTS motif to introduce the circumsporozoite (CS) protein into the hepatocyte cytoplasm and a nuclear localization signal (NLS) to enter its nucleus. CS outcompetes NFkappaB nuclear import, thus downregulating the expression of many genes controlled by NFkappaB, including those involved in inflammation. CS also influences the expression of over one thousand host genes involved in diverse metabolic processes to create a favorable niche for the parasite growth. The presence of CS in the hepatocyte enhances parasite growth of the liver stages in vitro and in vivo. These findings have far reaching implications for drug and vaccine development against the liver stages of the malaria parasite.  相似文献   
66.
Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.  相似文献   
67.
Eighteen green turtles Chelonia mydas recovered from the Atlantic and Gulf coasts of Florida and Tortuguero National Park, Costa Rica, were diagnosed with renal oxalosis by histopathological examination. Affected sea turtles included 14 adults and 4 immature animals, which comprised 26% (18/69) of green turtle necropsy cases available for review. Calcium oxalate deposition ranged from small to moderate amounts and was associated with granuloma formation and destruction of renal tubules. All affected turtles died from traumatic events or health problems unrelated to renal oxalosis; however, 1 immature turtle had notable associated renal injury. Crystal composition was confirmed by infrared and scanning electron microscopy and energy dispersive X-ray analysis. The source of calcium oxalate is unknown and is presumed to be of dietary origin.  相似文献   
68.
In a previous work (Raghupathy and Barocas, 2010, "Generalized Anisotropic Inverse Mechanics for Soft Tissues,"J. Biomech. Eng., 132(8), pp. 081006), a generalized anisotropic inverse mechanics method applicable to soft tissues was presented and tested against simulated data. Here we demonstrate the ability of the method to identify regional differences in anisotropy from full-field displacements and boundary forces obtained from biaxial extension tests on soft tissue analogs. Tissue heterogeneity was evaluated by partitioning the domain into homogeneous subdomains. Tests on elastomer samples demonstrated the performance of the method on isotropic materials with uniform and nonuniform properties. Tests on fibroblast-remodeled collagen cruciforms indicated a strong correlation between local structural anisotropy (measured by polarized light microscopy) and the evaluated local mechanical anisotropy. The results demonstrate the potential to quantify regional anisotropic material behavior on an intact tissue sample.  相似文献   
69.
Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-C's N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.  相似文献   
70.
Recent data suggest that cardiac pacemaker cell function is determined by numerous time-, voltage-, and Ca-dependent interactions of cell membrane electrogenic proteins (M-clock) and intracellular Ca cycling proteins (Ca-clock), forming a coupled-clock system. Many aspects of the coupled-clock system, however, remain underexplored. The key players of the system are Ca release channels (ryanodine receptors), generating local Ca releases (LCRs) from sarcoplasmic reticulum, electrogenic Na/Ca exchanger (NCX) current, and L-type Ca current (ICaL). We combined numerical model simulations with experimental simultaneous recordings of action potentials (APs) and Ca to gain further insight into the complex interactions within the system. Our simulations revealed a positive feedback mechanism, dubbed AP ignition, which accelerates the diastolic depolarization (DD) to reach AP threshold. The ignition phase begins when LCRs begin to occur and the magnitude of inward NCX current begins to increase. The NCX current, together with funny current and T-type Ca current accelerates DD, bringing the membrane potential to ICaL activation threshold. During the ignition phase, ICaL-mediated Ca influx generates more LCRs via Ca-induced Ca release that further activates inward NCX current, creating a positive feedback. Simultaneous recordings of membrane potential and confocal Ca images support the model prediction of the positive feedback among LCRs and ICaL, as diastolic LCRs begin to occur below and continue within the voltage range of ICaL activation. The ignition phase onset (identified within the fine DD structure) begins when DD starts to notably accelerate (~0.15 V/s) above the recording noise. Moreover, the timing of the ignition onset closely predicted the duration of each AP cycle in the basal state, in the presence of autonomic receptor stimulation, and in response to specific inhibition of either the M-clock or Ca-clock, thus indicating general importance of the new coupling mechanism for regulation of the pacemaker cell cycle duration, and ultimately the heart rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号