首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10450篇
  免费   739篇
  国内免费   16篇
  11205篇
  2023年   59篇
  2022年   121篇
  2021年   241篇
  2020年   135篇
  2019年   170篇
  2018年   210篇
  2017年   174篇
  2016年   294篇
  2015年   482篇
  2014年   520篇
  2013年   599篇
  2012年   766篇
  2011年   772篇
  2010年   506篇
  2009年   401篇
  2008年   558篇
  2007年   589篇
  2006年   540篇
  2005年   481篇
  2004年   436篇
  2003年   437篇
  2002年   425篇
  2001年   90篇
  2000年   68篇
  1999年   83篇
  1998年   112篇
  1997年   79篇
  1996年   69篇
  1995年   89篇
  1994年   61篇
  1993年   69篇
  1992年   79篇
  1991年   44篇
  1990年   45篇
  1989年   39篇
  1988年   51篇
  1987年   40篇
  1986年   38篇
  1985年   60篇
  1984年   65篇
  1983年   43篇
  1982年   59篇
  1981年   60篇
  1980年   61篇
  1979年   31篇
  1978年   44篇
  1977年   32篇
  1976年   34篇
  1974年   24篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3–7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.  相似文献   
52.
Zusammenfassung Ein Strandwald bei Danzig diente im Winter Zehntausenden von Nebelkrähen als Schlafplatz. Jeden Morgen flogen die Krähen nach allen Richtungen zu ihren Nahrungsplätzen, die zum Teil 50 und mehr Kilometer entfernt waren. Es wird ein Fall geschildert, aus dem hervorgeht, wodurch die Entdeckung einer besonders ergiebigen Nahrungsquelle den Artgenossen in weitem Umkreis bekannt wird.Das Raubvogel-Schema der Krähen ist sehr weit und schließt nur den Seeadler aus, der (wenigstens im Winter) von ihnen nicht angegriffen, sondern als Nahrungsspender betrachtet wird. Besonders heftig reagieren sie auf den Habicht. 150–200 Nebelkrähen belagerten einen Habicht, der vor ihnen in ein Kiefernstangenholz geflüchtet war. Der Baummarder löst bei Nebelkrähen dieselbe starke Reaktion aus wie der Habicht. Kolkraben scheinen im Winter von Krähen nicht angegriffen zu werden.  相似文献   
53.
54.
H2–forming N 5,N 10 methylenetetrahydromethanopterin dehydrogenase is a novel type of hydrogenase that contains neither nickel nor iron-sulfur clusters. Evidence has been presented that the reaction mechanism catalyzed by the enzyme is very similar to that of the formation of carbocations and H2 from alkanes under superacidic conditions. We present here further results in support of this mechanism. It was found that the purified enzyme per se did not catalyze the conversion of para H2 to ortho H2, a reaction catalyzed by all other hydrogenases known to date. However, it catalyzed the conversion in the presence of the substrate N 5,N 10 methenyltetrahydromethanopterin (CH≡H4MPT+), indicating that for heterolytic cleavage of H2 the enzyme-CH≡H4MPT+ complex is required. In D2O, the formation of HD and D2 from H2 rather than a paraortho H2 conversion was observed, indicating that after heterolytic cleavage of H2 the dissociation of the proton from the enzyme-substrate complex is fast relative to the re-formation of free H2.  相似文献   
55.
56.
The simplest views of long-range electron transfer utilize flat one-dimensional barrier tunneling models, neglecting structural details of the protein medium. The pathway model of protein electron transfer reintroduces structure by distinguishing between covalent bonds, hydrogen bonds, and van der Waals contacts. These three kinds of interactions in a tunneling pathway each have distinctive decay factors associated with them. The distribution and arrangement of these bonded and nonbonded contacts in a folded protein varies tremendously between structures, adding a richness to the tunneling problem that is absent in simpler views. We review the pathway model and the predictions that it makes for protein electron transfer rates in small proteins, docked proteins, and the photosynthetic reactions center. We also review the formulation of the protein electron transfer problem as an effective two-level system. New multi-pathway approaches and improved electronic Hamiltonians are described briefly as well.  相似文献   
57.
The blue-green alga Anacystis nidulans Drouet (Synechococcus leopoliensis Raciborski) cultivated under phosphate-limited conditions adopts a threshold value in the nanomolar range below which uptake ceases. In this study, we investigated the influence of phosphate pulses on the regulation of uptake behavior during reestablishment of the threshold value. Short-term pulses had only a slight effect on uptake kinetics and, hence, on the threshold value, even if the population had been exposed several times to elevated concentrations above the steady-state level in the growth medium. The threshold value was also practically insensitive to the amount of phosphate stored during these short-term fluctuations. Long-term phosphate pulses resulted in a transition to a metastable state that was characterized by a severalfold higher threshold value. This transition, apparently an adaptation to the transiently elevated phosphate concentrations, was further studied by following the influx of 32P-phosphate at constant external concentrations and was shown to be complete after a period of 10–20 min. After adaptation to pulses, the uptake behavior followed a linear flow-force relation over a wide range of external concentrations. This behavior was explained by the simultaneous operation of at least two uptake systems with different, but coordinated kinetic parameters. This linear flow-force relation facilitated a direct determination of the threshold value from uptake measurements. For applicability in the field the force-flow relation can be a diagnostic tool to assay for fluctuating phosphate and to establish threshold values below the normal measurable range .  相似文献   
58.
Mechanical damage and heat stimulation were used to activateproteinase inhibitor II (Pin2) gene expression in tomato plantsin both treated (local induction) and non-treated tissues (systemicinduction). Both stimuli have been shown to generate electricalsignals, leading to a systemic activation of gene expression.Treatment of tomato leaves with electrical current resultedin the accumulation of Pin2 mRNA in the local and systemic leaves.Additionally, all treatments inducing Pin2 gene activity gaverise to a significant alteration of stomatal aperture. However,heat stimulation provoked a different response in the stomatalparameters than mechanical wounding or electric treatment. Bothmechanical damage and electrical stimulation activated two characteristictime constants in the gas exchange relaxation kinetics. Conversely,heat stimulation resulted in only one major time constant. Theresults clearly show that direct current application to tomatoleaves initiates Pin2 mRNA accumulation locally and systemically.In addition, they suggest the participation of a second slowelectrical/hydraulic component in the wound response mechanismof tomato plants and a possible alternative pathway regulatingheat-induced Pin2 gene expression. (Received February 13, 1995; Accepted April 14, 1995)  相似文献   
59.
Root to shoot ratio of crops as influenced by CO2   总被引:1,自引:0,他引:1  
Crops of tomorrow are likely to grow under higher levels of atmospheric CO2. Fundamental crop growth processes will be affected and chief among these is carbon allocation. The root to shoot ratio (R:S, defined as dry weight of root biomass divided by dry weight of shoot biomass) depends upon the partitioning of photosynthate which may be influenced by environmental stimuli. Exposure of plant canopies to high CO2 concentration often stimulates the growth of both shoot and root, but the question remains whether elevated atmospheric CO2 concentration will affect roots and shoots of crop plants proportionally. Since elevated CO2 can induce changes in plant structure and function, there may be differences in allocation between root and shoot, at least under some conditions. The effect of elevated atmospheric CO2 on carbon allocation has yet to be fully elucidated, especially in the context of changing resource availability. Herein we review root to shoot allocation as affected by increased concentrations of atmospheric CO2 and provide recommendations for further research. Review of the available literature shows substantial variation in R:S response for crop plants. In many cases (59.5%) R:S increased, in a very few (3.0%) remained unchanged, and in others (37.5%) decreased. The explanation for these differences probably resides in crop type, resource supply, and other experimental factors. Efforts to understand allocation under CO2 enrichment will add substantially to the global change response data base.Abbreviations R:S root to shoot ratio, dry weight basis  相似文献   
60.
Twelve different lines of Datura stramonium (normal and hairy) root cultures were subjected to conditions which induce photoautotrophy. Two of the hairy root lines responded to induction, showing clearly a diminished growth rate when compared to heterotrophic cultures, an increase in chlorophyll, a net O2 evolution, CO2 fixation, and de novo synthesis of the ribulose 1,5 biphosphate carboxylase enzyme. A time course of growth and tropane alkaloid levels in the tissue and medium, revealed a correlation between the development of the photosynthetic apparatus and the increase in scopolamine. Although normal cultures did not grow photosynthetically, they showed some greening response under the first step of the induction. The correlation between development of photosynthesis and increase in scopolamine synthesis were corroborated with normal root cultures. This experimental model is used for the basic study of the regulatory enzymes involved in the biosynthesis of tropane alkaloids, as well as for the study of their mechanisms of transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号