首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7358篇
  免费   537篇
  国内免费   17篇
  7912篇
  2023年   36篇
  2022年   82篇
  2021年   156篇
  2020年   84篇
  2019年   96篇
  2018年   127篇
  2017年   99篇
  2016年   202篇
  2015年   321篇
  2014年   340篇
  2013年   419篇
  2012年   525篇
  2011年   565篇
  2010年   362篇
  2009年   287篇
  2008年   412篇
  2007年   438篇
  2006年   409篇
  2005年   355篇
  2004年   319篇
  2003年   325篇
  2002年   313篇
  2001年   62篇
  2000年   45篇
  1999年   70篇
  1998年   77篇
  1997年   63篇
  1996年   53篇
  1995年   63篇
  1994年   46篇
  1993年   53篇
  1992年   51篇
  1991年   23篇
  1990年   30篇
  1989年   23篇
  1988年   33篇
  1987年   24篇
  1986年   27篇
  1985年   36篇
  1984年   51篇
  1983年   36篇
  1982年   51篇
  1981年   45篇
  1980年   49篇
  1979年   23篇
  1978年   34篇
  1977年   30篇
  1976年   25篇
  1975年   21篇
  1973年   21篇
排序方式: 共有7912条查询结果,搜索用时 15 毫秒
101.
Sea urchin embryos swim by ciliary movement. Hypertonic shock causes deciliation and loss of motility. Within 2-4 h, cilia regenerate and the embryos swim again. Regeneration of cilia occurs multiple times. The adenylate kinase (AK) activity of isolated cilia was studied. A 130-kDa Sp-AK isozyme, present in sperm flagella, is also present in embryonic cilia. AK activity is responsible for approximately 93% of nonmitochondrial ATP regeneration from ADP in embryonic cilia. This is unlike sea urchin sperm flagella, where approximately 31% of the nonmitochondrial ATP regeneration is from the 130-kDa Sp-AK isozyme and approximately 69% from the flagellar creatine kinase (Sp-CK). Embryos were deciliated 1-3 times and after a 2-h period of regeneration the major ciliary axonemal proteins such as the tubulins appeared constant in amount. However, a moderate decrease in ATPase activity, and a large decrease of total AK activity, were measured. The decrease in AK activity paralleled the decrease in embryo swimming velocity. Embryos were deciliated once and cilia regeneration followed for 4 h. ATPase activity recovered to control levels by 3 h, but AK activity and swimming velocity remained lower than in controls. Detergent solubility data and kinetic experiments indicate that, in addition to the 130-kDa Sp-AK, there is at least one additional AK isozyme in embryonic cilia. Analysis of the S. purpuratus genome indicates five AK isozymes in addition to the 130-kDa Sp-AK isozyme. Decreased swimming velocity of embryos with regenerated cilia suggests that regenerated cilia are not as functionally perfect as naturally grown cilia.  相似文献   
102.
Adenylate kinase (AK) is localized in sea urchin sperm flagella and embryonic cilia. To investigate sea urchin Strongylocentrotus purpuratus AK (SpAK) enzymatic characteristics, the full-length recombinant protein of 130 kDa (SpAKr) and each of its three catalytic domains were expressed in Escherichia coli. Although the full-length SpAK had high enzymatic activity, each of the three catalytic domains had no activity. The Km for ATP synthesis from ADP was 0.23 mM and the Vmax was 4.51 mumol ATP formed per minute per milligram of protein. The specific AK inhibitor, Ap5A, blocks SpAKr enzymatic activity with an IC50 of 0.53 microM. The pH optimum for SpAKr is 8.1, as compared to 7.7 for the natural SpAK. Calcium inhibits SpAKr activity in a dose-dependent manner. Although SpAKr has three cAMP-dependent protein kinase phosphorylation sites, and can be phosphorylated in vitro, the enzymatic kinetics after phosphorylation are not significantly altered. SpAK and Chlamydomonas flagellar AKs are the only AKs with three catalytic sites. Further study of the SpAKr will aid in understanding the active site of this interesting and important ATP synthase.  相似文献   
103.
Ligation of CD47 triggers caspase-independent programmed cell death (PCD) in normal and leukemic cells. Here, we characterize the morphological and biochemical features of this type of death and show that it displays the hallmarks of type III PCD. A molecular and biochemical approach has led us to identify a key mediator of this type of death, dynamin-related protein 1 (Drp1). CD47 ligation induces Drp1 translocation from cytosol to mitochondria, a process controlled by chymotrypsin-like serine proteases. Once in mitochondria, Drp1 provokes an impairment of the mitochondrial electron transport chain, which results in dissipation of mitochondrial transmembrane potential, reactive oxygen species generation, and a drop in ATP levels. Surprisingly, neither the activation of the most representative proapoptotic members of the Bcl-2 family, such as Bax or Bak, nor the release of apoptogenic proteins AIF (apoptosis-inducing factor), cytochrome c, endonuclease G (EndoG), Omi/HtrA2, or Smac/DIABLO from mitochondria to cytosol is observed. Responsiveness of cells to CD47 ligation increases following Drp1 overexpression, while Drp1 downregulation confers resistance to CD47-mediated death. Importantly, in B-cell chronic lymphocytic leukemia cells, mRNA levels of Drp1 strongly correlate with death sensitivity. Thus, this previously unknown mechanism controlling caspase-independent type III PCD may provide the basis for novel therapeutic approaches to overcome apoptotic avoidance in malignant cells.  相似文献   
104.
105.
Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges.  相似文献   
106.
Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV.  相似文献   
107.
108.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   
109.
Beta-galactosidase activity was studied as a possible cause of the low milk acidification ability observed in Lactobacillus reuteri NRRL 14171. Enzymatic activity was determined in MRS broth supplemented with either glucose or lactose and milk at the middle and final stage of the exponential phase, as well as at the stationary phase. Results were compared with beta-galactosidase activity in Lactobacillus casei NRRL-B1922, a strain that shows the milk acidification ability. The effects of the types of carbon and nitrogen sources were established by comparison of growth parameters (higher maximum cell concentration and specific growth rate) in broth culture and skim milk supplemented with 2% glucose or 1% casein peptone. In milk, L. reuteri showed higher beta-galactosidase activity in all growth phases compared with L. casei. Greater cell concentration maxima, specific growth rates, and acidification abilities were observed in L. reuteri when it was cultured in milk supplemented with 1% casein peptone compared with non-supplemented milk cultures. Results suggest that the poor milk acidification ability observed in L. reuteri may be more related to a weak proteolytic system than to deficient beta-galactosidase activity.  相似文献   
110.

Background  

Pseudogenes often manifest themselves as disabled copies of known genes. In prokaryotes, it was generally believed (with a few well-known exceptions) that they were rare.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号