首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   150篇
  2379篇
  2023年   8篇
  2022年   29篇
  2021年   49篇
  2020年   35篇
  2019年   40篇
  2018年   61篇
  2017年   50篇
  2016年   71篇
  2015年   115篇
  2014年   116篇
  2013年   146篇
  2012年   158篇
  2011年   170篇
  2010年   99篇
  2009年   97篇
  2008年   148篇
  2007年   110篇
  2006年   136篇
  2005年   99篇
  2004年   100篇
  2003年   79篇
  2002年   67篇
  2001年   27篇
  2000年   28篇
  1999年   21篇
  1998年   31篇
  1997年   16篇
  1996年   23篇
  1995年   22篇
  1994年   16篇
  1993年   15篇
  1992年   18篇
  1991年   19篇
  1990年   17篇
  1989年   17篇
  1988年   11篇
  1987年   17篇
  1986年   12篇
  1985年   14篇
  1984年   11篇
  1983年   11篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1973年   3篇
  1969年   4篇
  1968年   2篇
  1966年   3篇
排序方式: 共有2379条查询结果,搜索用时 15 毫秒
51.
Pseudomonas chlororaphis PCL1606 (PcPCL1606) displays plant-colonizing features and exhibits antagonistic traits against soil-borne phytopathogenic fungi. Biofilm formation could be relevant for the PcPCL1606 lifestyle, and in this study the role of some putative extracellular matrix components (EMC; Fap-like fibre, alginate and Psl-like polysaccharides) in the biofilm architecture and biocontrol activity of this bacterium were determined. EMC such as the Fap-like fibre and alginate polysaccharide play secondary roles in biofilm formation in PcPCL1606, because they are not fundamental to its biofilm architecture in flow cell chamber, but synergistically they have shown to favour bacterial competition during biofilm formation. Conversely, studies on Psl-like polysaccharide have revealed that it may contain mannose, and that it is strongly involved in the PcPCL1606 biofilm architecture and niche competition. Furthermore, the Fap-like fibre and Psl-like exopolysaccharide play roles in early surface attachment and contribute to biocontrol activity against the white root rot disease caused by Rosellinia necatrix in avocado plants. These results constitute the first report regarding the study of the extracellular matrix of the PcPCL1606 strain and highlight the importance of a putative Fap-like fibre and Psl-like exopolysaccharide produced by PcPCL1606 in the biofilm formation process and interactions with the host plant root.  相似文献   
52.
53.
Recent genome‐wide association studies have linked type‐2 diabetes mellitus to a genomic region in chromosome 9p21 near the Ink4/Arf locus, which encodes tumor suppressors that are up‐regulated in a variety of mammalian organs during aging. However, it is unclear whether the susceptibility to type‐2 diabetes is associated with altered expression of the Ink4/Arf locus. In the present study, we investigated the role of Ink4/Arf in age‐dependent alterations of insulin and glucose homeostasis using Super‐Ink4/Arf mice which bear an extra copy of the entire Ink4/Arf locus. We find that, in contrast to age‐matched wild‐type controls, Super‐Ink4/Arf mice do not develop glucose intolerance with aging. Insulin tolerance tests demonstrated increased insulin sensitivity in Super‐Ink4/Arf compared with wild‐type mice, which was accompanied by higher activation of the insulin receptor substrate (IRS)‐PI3K‐AKT pathway in liver, skeletal muscle and heart. Glucose uptake studies in Super‐Ink4/Arf mice showed a tendency toward increased 18F‐fluorodeoxyglucose uptake in skeletal muscle compared with wild‐type mice (= 0.079). Furthermore, a positive correlation between glucose uptake and baseline glucose levels was observed in Super‐Ink4/Arf mice (P < 0.008) but not in wild‐type mice. Our studies reveal a protective role of the Ink4/Arf locus against the development of age‐dependent insulin resistance and glucose intolerance.  相似文献   
54.
Abstract

Ribonucleotide reductases are essential for the de novo biosynthesis of the 2′-deoxynucleotide components of DNA. These enzymes have complex cofactors and execute novel chemistry involving C2′ via radical abstraction of H3′. Mechanistic aspects of these transformations and selected nucleotide analogues that cause mechanism-based inactivation of ribonucleotide reductases are discussed.  相似文献   
55.
56.
57.
Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.  相似文献   
58.
Application of external organic inputs to soils can be considered as one of the most ancient strategies in agriculture, and it has been commonly used since the very beginning of human-based agricultural practices. During all this time, application of several organic matters to agricultural soils has demonstrated their benefit to plants and soils. Organic amendments have proved to be useful in recovering soil properties, improving soil quality and, in some cases, can be directly involved in providing beneficial effects to plants. All these obtained effects finally lead to an increase in crop protection and sustainability. One most expected effect caused by the application of organic amendments, is the suppression of a wide range of soilborne pathogens (mainly bacterial and fungal pathogens) due to the induction of physicochemical and biological changes in soils. In order to get insight into the nature of the induced soil suppression of soilborne plant pathogens, the analysis of the physical, chemical and the microbial changes, pointed to the key role of beneficial activities produced by soil microorganisms finally adapted to the environmental changes produced by the influence of organic amendments. As shown in the case studies reported here, participation of soil microbes specifically selected after organic amendment is crucial in the control of fungal soilborne diseases. Moreover, the development of “omics” approaches allowed these recent studies to go one step further, revealing the main actors involved in the induced soil suppressiveness and their activities. Thus “omics” techniques will help to understand the soil and its microbiome as a whole system, and to assign the important roles of its biological components.  相似文献   
59.
Knowledge of natural ecology is essential for a better understanding of pathogenicity and opportunism in black yeast-like fungi. Although etiological agents of diseases caused by these fungi are supposed to originate from the environment, their isolation from nature is difficult. This is probably due to their oligotrophic nature, low competitive ability, and, overall, insufficient data on their natural habitat. We obtained environmental samples from mangrove areas where mortalities by lethargic crab disease (LCD) are reported and areas without disease recorded. Isolation of chaetothyrialean black yeasts and relatives was performed using a highly selective protocol. Species-specific primers were used to determine if these isolates represented Exophiala cancerae or Fonsecaea brasiliensis, two proven agents of LCD, in order to test hypotheses about the origin of the disease. Isolates, identified by morphology as Fonsecaea- or Exophiala-like, were tested specific diagnostic markers for the fungi associated with LCD. Although several black fungi were isolated, the main causative agent of the LCD, E. cancerae, was not found. Molecular markers for F. brasiliensis revealed 10 positive bands for isolates from biofilms on mangrove leaves, branches, and aerial roots, of which four were confirmed by ITS sequencing. The absence of E. cancerae in environmental samples suggests that the species is dependent on the crab, as a genuine pathogen, different from F. brasiliensis, which is probably not dependent on the host species, U. cordatus. However, we did not attempt isolation from the marine water, which may represent the pathway of dispersion of the black yeast species between neighbor mangroves.  相似文献   
60.
The migratory route of neural progenitor/precursor cells (NPC) has a central role in central nervous system development. Although the role of the chemokine CXCL12 in NPC migration has been described, the intracellular signaling cascade involved remains largely unclear. Here we studied the molecular mechanisms that promote murine NPC migration in response to CXCL12, in vitro and ex vivo. Migration was highly dependent on signaling by the CXCL12 receptor, CXCR4. Although the JAK/STAT pathway was activated following CXCL12 stimulation of NPC, JAK activity was not necessary for NPC migration in vitro. Whereas CXCL12 activated the PI3K catalytic subunits p110α and p110β in NPC, only p110β participated in CXCL12-mediated NPC migration. Ex vivo experiments using organotypic slice cultures showed that p110β blockade impaired NPC exit from the medial ganglionic eminence. In vivo experiments using in utero electroporation nonetheless showed that p110β is dispensable for radial migration of pyramidal neurons. We conclude that PI3K p110β is activated in NPC in response to CXCL12, and its activity is necessary for immature interneuron migration to the cerebral cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号