首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   18篇
  193篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   5篇
  2015年   15篇
  2014年   3篇
  2013年   11篇
  2012年   13篇
  2011年   16篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   3篇
  2002年   11篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1988年   3篇
  1975年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
101.
102.
Apoptosis is a biological process relevant to human disease states that is strongly regulated through protein-protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.  相似文献   
103.
104.
We have identified a family of peptoids that inhibits in vitro the activity of the apoptosome, a macromolecular complex that activates mitochondrial-dependent apoptosis pathways. The analysis of peptide-based cell compatible delivery systems of the most active peptoid is presented. The active peptoid was then fused to cell penetrating peptides (CPP) as penetratin (PEN-peptoid) and HIV-1 TAT (TAT-peptoid). PEN-peptoid showed greater cell viability and as a consequence better efficiency as an apoptosis inhibitor than the TAT-peptoid. The intracellular trafficking of both inhibitors was studied by flow cytometry and confocal fluorescence microscopy. Finally, the influence of the cargo (peptoid) molecules on the conformational behavior of the CPP in buffers and in membrane mimetic environments was analyzed using circular dichroism (CD) spectroscopy.  相似文献   
105.
MiR-187 Targets the Androgen-Regulated Gene ALDH1A3 in Prostate Cancer   总被引:1,自引:0,他引:1  
miRNAs are predicted to control the activity of approximately 60% of all protein-coding genes participating in the regulation of several cellular processes and diseases, including cancer. Recently, we have demonstrated that miR-187 is significantly downregulated in prostate cancer (PCa) and here we propose a proteomic approach to identify its potential targets. For this purpose, PC-3 cells were transiently transfected with miR-187 precursor and miRNA mimic negative control. Proteins were analyzed by a two-dimensional difference gel electrophoresis (2D-DIGE) and defined as differentially regulated if the observed fold change was ±1.06. Then, MALDI-TOF MS analysis was performed after protein digestion and low abundance proteins were identified by LC–MS/MS. Peptides were identified by searching against the Expasy SWISS PROT database, and target validation was performed both in vitro by western blot and qRT-PCR and in clinical samples by qRT-PCR, immunohistochemistry and ELISA. DIGE analysis showed 9 differentially expressed spots (p<0.05) and 7 showed a down-regulated expression upon miR-187 re-introduction. Among these targets we identified aldehyde dehydrogenase 1A3 (ALDH1A3). ALDH1A3 expression was significantly downregulated in PC3, LNCaP and DU-145 cells after miR-187 re-introduction. Supporting these data, the expression of ALDH1A3 was found significantly (p<0.0001) up-regulated in PCa samples and inversely correlated (p<0.0001) with miR-187 expression, its expression being directly associated with Gleason score (p = 0.05). The expression of ALDH1A3 was measured in urine samples to evaluate the predictive capability of this biomarker for the presence of PCa and, at a signification level of 10%, PSA and also ALDH1A3 were significantly associated with a positive biopsy of PCa. In conclusion, our data illustrate for the first time the role of ALDH1A3 as a miR-187 target in PCa and provide insights in the utility of using this protein as a new biomarker for PCa.  相似文献   
106.
The aims of this work were to evaluate thyroid hormone receptor‐α (TRα), TRα1, and TRα2 mRNA gene expression and TRα1:TRα2 ratio, identified as candidate factors for explaining regional differences between human adipose tissue depots. TRα, TRα1, and TRα2 mRNA levels, and the gene expressions of arginine–serine‐rich, splicing factor 2 (SF2), heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), and Spot 14 (S14) were evaluated in 76 paired adipose tissue samples obtained from a population of 38 women who varied widely in terms of obesity and body fat distribution. Gene expression for these factors was also studied in stromal‐vascular cells (SVCs) and mature adipocytes (MAs) from eight paired fat depots. TRα gene and TRα1 mRNA expression were increased 1.46‐fold (P = 0.006) and 1.80‐fold (P < 0.0001), respectively, in subcutaneous (SC) vs. visceral fat. These differences in gene expression levels were most significant in the obese group, in which the TRα1:TRα2 ratio was 2.24‐fold (P < 0.0001) higher in SC vs. visceral fat. S14 gene expression was also increased by 2.42‐fold (P < 0.0001) and correlated significantly with TRα and TRα1 gene expression and with the TRα1:TRα2 ratio. In agreement with these findings, hnRNP A1:SF2 ratio was decreased by 1.39‐fold (P = 0.001). TRα and S14 levels were 2.1‐fold (P < 0.0001) and 112.4‐fold (P < 0.0001), respectively, higher in MAs than in SVCs from both fat depots. In summary, genes for TR‐α, their upstream regulators, and downstream effectors were differentially expressed in SC vs. omental (OM) adipose tissue. Our findings suggest that TRα1 could contribute to SC adipose tissue expandability in obese subjects.  相似文献   
107.
The Ca2+-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D2 receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D2 receptor, within an Arg-rich epitope that is also involved in the binding to Gi/o proteins and to the adenosine A2A receptor, with the formation of A2A-D2 receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A2A receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A2A-D2 receptor oligomerization. BRET competition experiments indicated that, in the A2A-D2 receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A2A receptor. Furthermore, Ca2+ was found to induce conformational changes in the CaM-A2A-D2 receptor oligomer and to selectively modulate A2A and D2 receptor-mediated MAPK signaling in the A2A-D2 receptor heteromer. These results may have implications for basal ganglia disorders, since A2A-D2 receptor heteromers are being considered as a target for anti-parkinsonian agents.G-protein-coupled receptors are able to form homo- and hetero-oligomers with unique biochemical and functional characteristics (17), and they are easily detected in vitro by using biophysical techniques (810). Heteromers of adenosine A2A and dopamine D2 receptors were one of the first G-protein-coupled receptor heteromers to be described (11). A close physical interaction between both receptors was shown using co-immunoprecipitation and co-localization assays (11) and fluorescence and bioluminescence resonance energy transfer (FRET2 or BRET) techniques (1214). At the biochemical level, two types of antagonistic A2A-D2 receptor interactions have been discovered that may explain the A2A-D2 receptor interactions described both at the neuronal and behavioral level (11, 1518). First, by means of an allosteric interaction in the receptor heteromer, stimulation of A2A receptor decreases the affinity of D2 receptor for their agonists (12). Second, the stimulation of the Gi/o-protein-coupled D2 receptor inhibits the cAMP accumulation induced by the stimulation of the Gs/olf-protein-coupled A2A receptor (11, 17, 18). In view of the well known role of dopamine in Parkinson disease, schizophrenia, and drug addiction, it has been suggested that the A2A-D2 receptor interactions in the central nervous system may provide new therapeutic approaches to combat these disorders (16, 19).An epitope-epitope electrostatic interaction between an Arg-rich epitope of the N terminus of the third intracellular loop (3IL) of the D2 receptor and an epitope containing a phosphorylated Ser localized in the distal part of the C terminus of the A2A receptor is involved in A2A-D2 receptor heteromer interface (14, 20, 21). The same Arg-rich epitope of the D2 receptor is able to interact with CaM (2225). In the absence of phosphorylated residues, adjacent aspartates or glutamates, which are abundant in CaM, may also form non-covalent complexes with Arg-rich epitopes (26). Therefore, CaM can potentially convey a Ca2+ signal to the D2 receptor through direct binding to the 3IL of the D2 receptor (22). Mass spectrometry data have shown that bovine CaM can form multiple non-covalent complexes with an Arg-rich peptide corresponding to the N-terminal region of the 3IL of the D2 receptor (VLRRRRKRVN) (24) as well as a peptide from the proximal C terminus of the A2A receptor (24). This epitope, whose sequence is 291RIREFRQTFR300 in the human A2A receptor, also contains several Arg residues. Since the suspected interaction between the A2A receptor and CaM was awaiting confirmation by assays using complete proteins, the present study was undertaken to demonstrate the existence of interactions between the A2A receptor and CaM both in a recombinant protein expression cell system and in the brain. A proteomics approach was used for the discovery of protein-protein interactions between the A2A receptor and CaM in rat brain, whereas BRET in transfected cells demonstrated a direct interaction between CaM and this receptor. Furthermore, by using BRET and sequential resonance energy transfer (SRET) techniques and analyzing MAPK signaling in transfected cells, evidence was obtained for CaM-A2A-D2 receptor oligomerization and a selective Ca2+-mediated modulation of A2A and D2 receptor function in the A2A-D2 receptor heteromer.  相似文献   
108.
Polyamines are key regulators of cell development and many plant responses to environmental challenges, however, their functions still remain unclear in complex interactions with other hormones and in biotic or abiotic stress. This lack of knowledge derives from the difficulties on measuring natural polyamines in plants. Here, we present a fast multiresidue method for putrescine (Put), 1,3-diaminopropane (DAP), l-ornithine, spermidine (Spd) and spermine (Spn) measurements in plant samples. Polyamine determination is based on a perchloric acid extraction followed by a simple filtration procedure without previous derivatization. Polyamines are resolved by HPLC in a C18 common column and quantified by electrospray ionization tandem mass spectrometry. 13C4-putrescine and 1,7-diaminoheptane standards were added prior to sample extraction to achieve an accurate quantification in a single run. Chromatography of polyamines presents poor retention when reverse phase C18 common columns are used, because they are very polar compounds and contain several positive charges. To circumvent this problem ionic pairing technique has been used successfully with heptafluorobutyric acid (HFBA) at 1 mM in the aqueous phase and 25 mM in the sample. Improvement of the signal depleted by HFBA has been achieved by adding 1% of propionic acid to the aqueous and organic eluents. All together, gives a method accurate enough to determine polyamines in plants. To demonstrate the usefulness of the method it has been validated in Arabidopsis thaliana samples and polyamines have been determined in several genotypes that over express (35S::ADC2 line 3.6) or are disrupted (adc2) in the Arginine Decarboxylase2 (ADC2) gene.  相似文献   
109.
Steroid hormones regulate gene expression by interaction of their receptors with hormone responsive elements (HREs) and recruitment of kinases, chromatin remodeling complexes, and coregulators to their target promoters. Here we show that in breast cancer cells the BAF, but not the closely related PBAF complex, is required for progesterone induction of several target genes including MMTV, where it catalyzes localized displacement of histones H2A and H2B and subsequent NF1 binding. PCAF is also needed for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark that interacts with the BAF subunits by anchoring the complex to chromatin. In the absence of PCAF, full loading of target promoters with hormone receptors and BAF is precluded, and induction is compromised. Thus, activation of hormone-responsive promoters requires cooperation of at least two chromatin remodeling activities, BAF and PCAF.  相似文献   
110.
Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R–A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron–glia–neuron) synapse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号