首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   15篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   15篇
  2014年   3篇
  2013年   10篇
  2012年   12篇
  2011年   15篇
  2010年   6篇
  2009年   9篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   10篇
  2004年   10篇
  2003年   3篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1988年   3篇
  1975年   1篇
排序方式: 共有185条查询结果,搜索用时 849 毫秒
151.
The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well as on the formation of a MnmE transition state mimic. GTP hydrolysis by MnmE, but not GTP binding or formation of a complex with mant-GDP and aluminium fluoride, is impaired at acidic pH, suggesting that the chemistry of the transition state mimic is different to that of the true transition state, and that some residue(s), critical for GTP hydrolysis, is severely affected by low pH. We use a nuclear magnetic resonance (NMR)-based approach to get insights into the MnmE structure and properties. The combined use of NMR restraints and homology structural information allowed the determination of the MnmE G-domain structure in its free form. Chemical shift structure-based prediction provided a good basis for structure refinement and validation. Our data support that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis, although Arg252 may play a role in stabilization of the transition state.  相似文献   
152.
153.
Aspergillus flavusresting cells were washed with solvents of different polarity for 2, 6, and 24 h and then suspended in isooctane containing either oleic acid and 1-propanol or 1-propanol alone. Propyl oleate and propyl linoleate were produced in all experiments after 24 h due to the presence of residual fatty acids originating from the sunflower oil used for growing the mycelium. After 24 h washing, most solvents produced a 70 to 90% decrease in lipase activity and a 0 to 99% decrease in the amount of residual acids. 0.7 M 1-propanol in hexane was the best washing solvent among all those assayed (93% remaining activity, 0.3% residual oleic acid).  相似文献   
154.
The ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)) protein is an scaffold component of different inflammasomes, intracellular multiprotein platforms of the innate immune system that are activated in response to pathogens or intracellular damage. The formation of ASC specks, initiated by different inflammasome receptors, promotes the recruitment and activation of procaspase-1, thereby triggering pyroptotic inflammatory cell death and pro-inflammatory cytokine release. Here we describe MM01 as the first-in-class small-molecule inhibitor of ASC that interferes with ASC speck formation. MM01 inhibition of ASC oligomerization prevents activation of procaspase-1 in vitro and inhibits the activation of different ASC-dependent inflammasomes in cell lines and primary cultures. Furthermore, MM01 inhibits inflammation in vivo in a mouse model of inflammasome-induced peritonitis. Overall, we highlight MM01 as a novel broad-spectrum inflammasome inhibitor for the potential treatment of multifactorial diseases involving the dysregulation of multiple inflammasomes.Subject terms: Small molecules, Target validation  相似文献   
155.
Here, we report that in T47D breast cancer cells 50 pM progestin is sufficient to activate cell cycle entry and the progesterone gene expression program. At this concentration, equivalent to the progesterone blood levels found around the menopause, progesterone receptor (PR) binds only to 2800 genomic sites, which are accessible to ATAC cleavage prior to hormone exposure. These highly accessible sites (HAs) are surrounded by well-organized nucleosomes and exhibit breast enhancer features, including estrogen receptor alpha (ERα), higher FOXA1 and BRD4 (bromodomain containing 4) occupancy. Although HAs are enriched in RAD21 and CTCF, PR binding is the driving force for the most robust interactions with hormone-regulated genes. HAs show higher frequency of 3D contacts among themselves than with other PR binding sites, indicating colocalization in similar compartments. Gene regulation via HAs is independent of classical coregulators and ATP-activated remodelers, relying mainly on MAP kinase activation that enables PR nuclear engagement. HAs are also preferentially occupied by PR and ERα in breast cancer xenografts derived from MCF-7 cells as well as from patients, indicating their potential usefulness as targets for therapeutic intervention.  相似文献   
156.
157.

Aims

Galectin-3 (Gal-3) and carbohydrate antigen 125 (CA125) have emerged as robust prognostic biomarkers in heart failure. Experimental data have also suggested a potential molecular interaction between CA125 and Gal-3; however, the biological and clinical relevance of this interaction is still uncertain. We sought to evaluate, in patients admitted for acute heart failure, the association between plasma Gal-3 with all-cause mortality and the risk for rehospitalizations among high and low levels of CA125.

Methods and Results

We included 264 consecutive patients admitted for acute heart failure to the Cardiology Department in a third-level center. Both biomarkers were measured on admission. Negative binomial and Cox regression models were used to evaluate the prognostic effect of the interaction between Gal-3 and CA125 (dichotomized by its median) with hospital readmission and all-cause mortality, respectively. During a median follow-up of 2 years (IQR = 1-2.8), 108 (40.9%) patients deaths and 365 rehospitalizations in 171 (69.5%) patients were registered. In a multivariable setting, the effect of Gal-3 on mortality and rehospitalization was differentially mediated by CA125 (p = 0.007 and p<0.001, respectively). Indeed, in patients with CA125 above median (>67 U/ml), values across the continuum of Gal-3 showed a positive and almost linear relationship with either the risk of death or rehospitalization. Conversely, when CA125 was below median (≤67 U/ml), Gal-3 lacked any prognostic effect on both endpoints.

Conclusion

In patients with acute heart failure, Gal-3 was strongly associated with higher risk of long-term mortality and repeated rehospitalizations, but only in those patients exhibiting higher values of CA125 (above 67 U/ml).  相似文献   
158.
Phytohormones are key players in signaling environmental stress conditions. Hormone profiling together with proline accumulation were studied in leaves and roots of different mutant lines of Arabidopsis. Regulation of proline accumulation in this system seems complex and JA-deficient (jar1-1) and JA-insensitive (jai1) lines accumulating high levels of proline despite their very low ABA levels seems to discard an ABA-dependent response. However, the pattern of proline accumulation in jai1 seedlings parallels that of ABA. Under stress conditions, there is an opposite pattern of ABA accumulation in roots of jar1-1/coi1-16 (in which ABA only slightly increase) and jai1 (in which ABA increase is even higher than in WT plants). This also makes JA-ABA crosstalk complex and discards any lineal pathway that could explain this hormonal interaction.  相似文献   
159.
160.
Previously, using artificial cell systems, we identified receptor heteromers between the dopamine D(1) or D(2) receptors and the histamine H(3) receptor. In addition, we demonstrated two biochemical characteristics of the dopamine D(1) receptor-histamine H(3) receptor heteromer. We have now extended this work to show the dopamine D(1) receptor-histamine H(3) receptor heteromer exists in the brain and serves to provide a novel link between the MAPK pathway and the GABAergic neurons in the direct striatal efferent pathway. Using the biochemical characteristics identified previously, we found that the ability of H(3) receptor activation to stimulate p44 and p42 extracellular signal-regulated MAPK (ERK 1/2) phosphorylation was only observed in striatal slices of mice expressing D(1) receptors but not in D(1) receptor-deficient mice. On the other hand, the ability of both D(1) and H(3) receptor antagonists to block MAPK activation induced by either D(1) or H(3) receptor agonists was also found in striatal slices. Taken together, these data indicate the occurrence of D(1)-H(3) receptor complexes in the striatum and, more importantly, that H(3) receptor agonist-induced ERK 1/2 phosphorylation in striatal slices is mediated by D(1)-H(3) receptor heteromers. Moreover, H(3) receptor-mediated phospho-ERK 1/2 labeling co-distributed with D(1) receptor-containing but not with D(2) receptor-containing striatal neurons. These results indicate that D(1)-H(3) receptor heteromers work as processors integrating dopamine- and histamine-related signals involved in controlling the function of striatal neurons of the direct striatal pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号