首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   36篇
  2021年   7篇
  2019年   10篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   16篇
  2014年   10篇
  2013年   27篇
  2012年   21篇
  2011年   31篇
  2010年   15篇
  2009年   12篇
  2008年   14篇
  2007年   18篇
  2006年   16篇
  2005年   10篇
  2004年   24篇
  2003年   18篇
  2002年   20篇
  2001年   17篇
  2000年   10篇
  1999年   10篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   13篇
  1993年   6篇
  1992年   13篇
  1991年   13篇
  1990年   6篇
  1989年   8篇
  1988年   10篇
  1987年   12篇
  1986年   16篇
  1985年   12篇
  1984年   6篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1979年   12篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1973年   5篇
  1970年   7篇
  1969年   5篇
  1965年   4篇
  1961年   4篇
排序方式: 共有619条查询结果,搜索用时 234 毫秒
151.
Host factor pathways are known to be essential for hepatitis C virus (HCV) infection and replication in human liver cells. To search for novel host factor proteins required for HCV replication, we screened a subgenomic genotype 1b replicon cell line (Luc-1b) with a kinome and druggable collection of 20,779 siRNAs. We identified and validated several enzymes required for HCV replication, including class III phosphatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and mevalonate (diphospho) decarboxylase. Knockdown of PI4KA could inhibit the replication and/or HCV RNA levels of the two subgenomic genotype 1b clones (SG-1b and Luc-1b), two subgenomic genotype 1a clones (SG-1a and Luc-1a), JFH-1 genotype 2a infectious virus (JFH1-2a), and the genomic genotype 1a (FL-1a) replicon. In contrast, PI4KB knockdown inhibited replication and/or HCV RNA levels of Luc-1b, SG-1b, and Luc-1a replicons. The small molecule inhibitor, PIK93, was found to block subgenomic genotype 1b (Luc-1b), subgenomic genotype 1a (Luc-1a), and genomic genotype 2a (JFH1-2a) infectious virus replication in the nanomolar range. PIK93 was characterized by using quantitative chemical proteomics and in vitro biochemical assays to demonstrate PIK93 is a bone fide PI4KA and PI4KB inhibitor. Our data demonstrate that genetic or pharmacological modulation of PI4KA and PI4KB inhibits multiple genotypes of HCV and represents a novel druggable class of therapeutic targets for HCV infection.Hepatitis C virus (HCV) causes liver disease in humans, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (52). The HCV genome is a single-stranded RNA molecule where both the 5′ and the 3′ untranslated region (UTR) contain highly conserved RNA structures necessary for polyprotein translation and genome replication (43). The processed polyprotein yields at least three structural proteins and six nonstructural proteins. The structural proteins include the core, which forms the viral nucleocapsid, and the envelope glycoproteins E1 and E2. The viral proteins processed by signal peptidases form viral particles that assemble at the endoplasmic reticulum (ER) and/or Golgi bodies and are released from the host cell by viral budding. The structural protein coding regions are separated from nonstructural proteins by the short membrane peptide p7, thought to function as an ion channel (43, 53). The nonstructural proteins NS2, NS3/4A, NS5A, and NS5B are involved in coordinating the intracellular processes of the virus life cycle, including polyprotein processing and viral RNA replication (34).The Luc-1b cell is a human hepatoma cell line (Huh7) that contains a genotype 1b HCV subgenomic replicon, a luciferase reporter, and a neomycin selection marker, allowing HCV replication to be studied both in vitro and in vivo (8, 36). This subgenomic replicon lacks the coding regions for NS2 and the structural proteins but contains the nonstructural proteins in cis, which are required for replication of the viral RNA. Expression of the luciferase gene acts as a surrogate marker for levels of HCV RNA produced in the cell. The goal of the present study was to use this subgenomic HCV replicon to screen siRNA libraries and identify novel host proteins that are involved in HCV replication.A number of cellular pathways and proteins that play critical roles in HCV replication have recently been described (41, 42, 46). In particular, replication of HCV is tied closely to its localization and transport to various internal membranes and to lipid metabolism (2). Most of the HCV proteins appear to be targeted to the surface of the ER and replication complexes appear to be transported to lipid rafts, where RNA replication can occur (2). Infectious virus particle formation occurs in association with lipid droplets, and this process requires the core and NS5A proteins. In addition, cholesterol pathway production of geranylgeranyl-PP is important to geranylate the FBL2 protein, which serves as a membrane anchor for NS5A (62). The hVAP proteins involved in the localization and trafficking between internal membranous structures are known to be associated with the HCV proteins NS5A and NS5B (59). Thus, host factor lipid metabolism and intracellular protein transport are necessary for HCV replication in cells.Targeting host factors that are required for viral replication offers a strategy to overcome viral resistance and may allow treatment for more than one genotype of HCV and/or a related Flaviviridae virus such as Dengue, West Nile, or yellow fever virus. The current standard-of-care treatment for the genotype 1 strain of HCV infection is pegylated interferon alpha plus ribavirin over a 6-month time course with more than half of infected patients being refractory to this treatment (57). In addition to genotype 1, there are at least five naturally occurring genotype variants of HCV that can complicate a patient''s response to therapy when infected with more than one genotype. As well as the development of mutations, the presence of multiple variants coexisting in patients is thought to contribute to the rapid development of resistance (40). A variety of antiviral therapeutic strategies aim to inhibit viral proteins directly with small molecules or siRNAs (13, 31, 33). Although some small molecule approaches have been successful in preclinical studies, small-molecule strategies directed against the viral targets can still be rendered ineffective due to the development of mutant, treatment-resistant viral strains (13, 40). Thus, combination therapies are a necessary approach to treat the many variants of HCV that exist in the patient population.In the present study, a set of 779 SMARTpool small interfering RNAs (siRNAs) targeting the kinome and 4 siRNAs targeting 5,000 druggable genes (20,000 siRNAs) were tested for their ability to block replication of the Luc-1b HCV subgenomic replicon. siRNAs targeting CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase), a tripartite enzyme that catalyzes the first three steps of pyrimidine biosynthesis, inhibited both the Luc-1b replicon and JFH1-2a virus expression. This activity is consistent with the known inhibitor of this enzyme, leflunomide, which has been shown previously to inhibit both respiratory syncytial virus and HCV (12, 54). siRNAs targeting the mevalonate (diphospho) decarboxylase (MVD) enzyme, which catalyzes the formation of mevalonate, were found to inhibit Luc-1b replication (19). Inhibition of the cholesterol biosynthesis pathway and host cell geranylation has been previously reported to inhibit HCV subgenomic replication (3, 24, 51, 62, 67). siRNA-mediated knockdown of the class III phosphatidylinositol 4-kinases PI4KA and PI4KB inhibited luciferase expression not only for the genotype 1b subgenomic replicons (Luc-1a and Luc-1b) but also for the viral RNA levels of SG-1b, Luc-1b, and Luc-1a. PI4KA knockdown also inhibited Renilla expression in the JFH-1 genotype 2a infectious virus (JFH1-2a), genotype 2a subgenomic replicon (SG-1a), and a genomic and subgenomic genotype 1a replicon (FL-1a and SG-1a). Using the small-molecule inhibitor PIK93 in compound affinity competition experiments and in vitro biochemical assays, we demonstrated PIK93 could bind and inhibit both PI4KA and PI4KB enzymatic activity (58). PIK93 could inhibit luciferase expression in the Luc-1b, Luc-1a, and JFH1-2a infectious virus assays in the submicromolar range. Together, our data suggest that PI4KA and PI4KB regulate HCV replication and that pharmacological inhibition of these enzymes represents a new class of antiviral agents for multiple genotypes of HCV. Finally, since PI4KA and PI4KB are known to regulate protein and lipid transport to and from the ER and Golgi bodies, their function may hold clues as to how movement of HCV replication complexes throughout different organelles is regulated.  相似文献   
152.
153.
154.
Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrPC) to disease‐causing PrPSc isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain–prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrPSc replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches.  相似文献   
155.
156.
1.  The geographical range sizes of individual species vary considerably in extent, although the factors underlying this variation remain poorly understood, and could include a number of ecological and evolutionary processes. A favoured explanation for range size variation is that this result from differences in fundamental niche breadths, suggesting a key role for physiology in determining range size, although to date empirical tests of these ideas remain limited.
2.  Here we explore relationships between thermal physiology and biogeography, whilst controlling for possible differences in dispersal ability and phylogenetic relatedness, across 14 ecologically similar congeners which differ in geographical range extent; European diving beetles of the genus Deronectes Sharp (Coleoptera, Dytiscidae). Absolute upper and lower temperature tolerance and acclimatory abilities are determined for populations of each species, following acclimation in the laboratory.
3.  Absolute thermal tolerance range is the best predictor of both species' latitudinal range extent and position, differences in dispersal ability (based on wing size) apparently being less important in this group. In addition, species' northern and southern range limits are related to their tolerance of low and high temperatures respectively. In all cases, absolute temperature tolerances, rather than acclimatory abilities are the best predictors of range parameters, whilst the use of independent contrasts suggested that species' thermal acclimation abilities may also relate to biogeography, although increased acclimatory ability does not appear to be associated with increased range size.
4.  Our study is the first to provide empirical support for a relationship between thermal physiology and range size variation in widespread and restricted species, conducted using the same experimental design, within a phylogenetically and ecologically controlled framework.  相似文献   
157.
The overall rate of functioning of a set of free sequential enzymes of the Michaelis–Menten type involved in a metabolic pathway has been computed as a function of the concentration of the initial substrate under steady-state conditions. Curves monotonically increasing up to a saturation plateau have been obtained in all cases. The shape of these curves is sometimes, but not usually, close to that of a hyperbola. Cases exist in which the overall rate of reaction becomes quasi proportional to the concentration of initial substrate almost up to the saturation plateau, which never occurs with individual enzymes. Increasing the number of enzymes sequentially involved in a metabolic pathway does not seem to generate any particularly original behaviour compared with that of two-enzyme systems. To cite this article: G. Legent et al., C. R. Biologies 329 (2006).  相似文献   
158.
The overall rate of functioning of a set of free sequential enzymes of the Michaelis-Menten type involved in a metabolic pathway has been computed as a function of the concentration of the initial substrate under steady-state conditions. Curves monotonically increasing up to a saturation plateau have been obtained in all cases. The shape of these curves is sometimes, but not usually, close to that of a hyperbola. Cases exist in which the overall rate of reaction becomes quasi proportional to the concentration of initial substrate almost up to the saturation plateau, which never occurs with individual enzymes. Increasing the number of enzymes sequentially involved in a metabolic pathway does not seem to generate any particularly original behaviour compared with that of two-enzyme systems.  相似文献   
159.
Ovarian function of nutritionally induced anoestrus cows was evaluated in vivo (Expt 1) and in vitro (Expt 2). In Expt 1, 32 nutritionally induced anoestrous beef cows were divided into four treatment groups receiving: (1) saline infusions at one pulse every 4 h for 13 days (control); (2) 2 micrograms GnRH at one pulse every 4 h (2 micrograms infused in 1.8 ml saline over 5 min) for 13 days (GnRH-4); (3) 2 micrograms GnRH at one pulse every 1 h for 13 days (GnRH-1); and (4) continuous infusion of 2 micrograms GnRH (a total of 2 micrograms in 34 ml h-1) for 13 days (GnRH-C). On the last day of treatment, cows were killed, ovaries were removed and follicular fluid samples (n = 149) were collected. The percentage of cows with luteal activity on day 13 was significantly different (P < 0.01) among treatments (0, 25, 75 and 25% for control, GnRH-4, GnRH-1 and GnRH-C cows, respectively). Owing to the large percentage of ovulatory cows in the GnRH-1 group (n = 6), anovulatory cows (n = 2) were removed from this treatment group for statistical analysis, as were cows with luteal tissue from the GnRH-4 (n = 2) and GnRH-C (n = 2) groups. The numbers of small (1.0-4.9 mm) and medium plus large (> or = 5 mm) follicles were not affected (P > 0.10) by treatment. However, GnRH-4 cows (n = 6) had greater (P < 0.05) concentrations of oestradiol in follicular fluid than did control (n = 8) but not GnRH-1 (n = 6) or GnRH-C (n = 6) cows. Concentrations of insulin-like growth factor I were greater (P < 0.05) in the follicular fluid of GnRH-1 cows than in all other treatment groups. Concentrations of androstenedione and progesterone in follicular fluid were not affected (P > 0.10) by treatment or follicle size. The binding activity of insulin-like growth factor binding proteins was not affected by GnRH treatment. However, the binding activity of insulin-like growth factor binding protein 2, 29-32 kDa and 22 kDa insulin-like growth factor binding proteins were greater (P < 0.05) in small versus medium plus large follicles. In Expt 2, granulosa cells were collected from nutritionally anoestrous cows to determine whether ovarian cells from anoestrous cows have the capacity to respond to insulin-like growth factor I or insulin in vitro. Both insulin-like growth factor I (20 and 200 ng ml-1) and insulin (10, 100 and 1000 ng ml-1) increased (P < 0.05) granulosa cell proliferation and progesterone production. In conclusion, pulsatile infusion of 2 micrograms GnRH (every 1 or 4 h) for 13 days into nutritionally induced anoestrous cows results in increased intrafollicular oestradiol and insulin-like growth factor I concentrations and can stimulate ovulation without markedly affecting concentrations of androstenedione or progesterone, or the binding activity of insulin-like growth factor binding proteins, in follicular fluid. In addition, granulosa cells from nutritionally induced anoestrous cows have the capacity to respond to insulin-like growth factor I and insulin in vitro, indicating that the decrease in trophic factors observed with restricted feeding does not reduce the response of the ovary to insulin-like growth factor I and insulin.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号