首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   7篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  1999年   2篇
  1993年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
11.
The aim of this study was to evaluate the safety and effectiveness of coblation-channeling in the treatment of inferior turbinate hypertrophy. The study was conducted in the Department of ENT Head and Neck Surgery, Split University Hospital Center, Split, Croatia. Fifty-two patients with inferior turbinate hypertrophy who were refractory to medical therapy were evaluated for coblation. The procedures were performed under local anesthesia using an ArthroCare ReFlexUltra 45 wand; three submucosal channels were made per turbinate. Clinical examinations, a questionnaire on individual nasal symptoms (hyposmia, nasal drainage and post-nasal drip), a 10-cm visual analog scale (VAS) grading general nasal obstructions, and rhinomanometry before and 8 weeks after the treatment were administered to assess treatment outcomes. No adverse effects were encountered. Nasal breathing was significantly improved in all patients, decreasing the VAS from a median of 7 (range 2-9) to 1 (range 0-3) (p < 0.001). Total nasal resistance decreased from 0.44 Pa +/- 0.50 to 0.24 Pa +/- 0.11 (p = 0.005). Improvement was statistically significant for all three symptoms (hyposmia [p = 0.005], nasal drainage [p = 0.003] and post-nasal drip [p < 0.001]). In this paper, we demonstrate that coblation-channeling of the hypertrophic inferior turbinate is an effective and safe way to reduce nasal obstruction symptoms.  相似文献   
12.
FMN hydrolases catalyze dephosphorylation of FMN to riboflavin. Although these enzymes have been described in many organisms, few had their corresponding genes cloned and their recombinant proteins biochemically characterized, and none had their physiological roles determined. We found previously that FMN hydrolase activity in pea chloroplasts is Mg(2+)-dependent, suggesting an enzyme of the haloacid dehalogenase (HAD) superfamily. In this study, a new FMN hydrolase was purified by multistep chromatography after ammonium sulfate precipitation. The molecular weight of the native protein was estimated at ~59,400, a dimer of about twice the predicted molecular weight of most HAD superfamily phosphatases. After SDS-PAGE of the partially purified material, two separate protein bands within 25-30 kDa were extracted from the gel and analyzed by nanoLC-MS/MS. Peptide sequence matching to the protein samples suggested the presence of three HAD-like hydrolases. cDNAs for sequence homologs from Arabidopsis thaliana of these proteins were expressed in Escherichia coli. Activity screening of the encoded proteins showed that the At1g79790 gene encodes an FMN hydrolase (AtcpFHy1). Plastid localization of AtcpFHy1 was confirmed using fluorescence microscopy of A. thaliana protoplasts transiently expressing the N-terminal fusion of AtcpFHy1 to enhanced green fluorescent protein. Phosphatase activity of AtcpFHy1 is FMN-specific, as assayed with 19 potential substrates. Kinetic parameters and pH and temperature optima for AtcpFHy1 were determined. A phylogenetic analysis of putative phosphatases of the HAD superfamily suggested distinct evolutionary origins for the plastid AtcpFHy1 and the cytosolic FMN hydrolase characterized previously.  相似文献   
13.
Results of our study describe the long term effects of reduction mammaplasty. Many women with excessively small or large breasts have an altered personal self-image and often suffer from low self-esteem and other psychological stresses. This procedure is designed to reduce and reshape large breasts, and since the size, shape, and symmetry of a woman's breasts can have a profound effect on her mental and physical well-being it is important to observe the patient's long-term outcome. Currently, breast reduction surgery is safe, effective and beneficial to the patient. In Croatia, reduction mammoplasty is often excluded from the general health care plan. The distinction between "reconstructive" versus "cosmetic" breast surgery is very well defined by the American Society of Plastic Surgeons Board of Directors. Unfortunately, the Croatian Health Society has yet to standardize such a distinction. There is an imperative need for evidence-based selection criteria. We retrospectively analyzed data of 59 female patients suffering from symptomatic macromastia who underwent reduction mammaplasty over a 16 year period (1995 until 2011). Our aim was to compare and contrast the various techniques available for reduction mammaplasty and to determine, based on patient outcome and satisfaction, which technique is most suited for each patient. The results of our study generally reinforce the observation that reduction mammaplasty significantly provides improvements in health status, long-term quality of life, postsurgical breast appearance and significantly decrease physical symptoms of pain. A number of 59 consecutive cases were initially treated with the four different breast reduction techniques: inverted-T scat or Wisa pattern breast reduction, vertical reduction mammaplasty, simplified vertical reduction mammaplasty, inferior pedicle and free nipple graft techniques. The average clinical follow-up period was 6-months, and included 48 patients. The statistical analysis of the postoperative patient complications revealed a significant positive relationship in regards to smoking. The majority of these complications were wound related, with no significant relationship between patient complications and variables such as age, BMI, ASA score, resection weight of breast parenchyma, nipple elevation, duration of surgery, and type of pedicle. The higher number of complication correlated with a lower volume of parenchyma resection (rho=-0.321). Overall satisfaction with the new breast size (79%), appearance of the postoperative scars (87%), overall cosmetic outcome score (91%), overall outcome (100%), psychosocial outcome (46%), sexual outcome (85%), physical outcome (88%), satisfaction with preoperative information data (92%), and finally satisfaction with overall care process (96%) was calculated. As expected, the physical symptoms disappeared or were minimized in 88% of patients. Each method of breast reduction has its advantages and disadvantages. The surgeon should evaluate each patient's desires on the basis of her physical presentation. Breast reduction surgery increases the overall personal and social health; not only for the patient, but for their family and friends as well. It is an imperative that every surgeon is aware of this, in order to provide the highest level of care and quality to their patients.  相似文献   
14.
The interaction between the RecBCD enzyme of Escherichia coli and the lambda Gam protein was investigated. Two types of experiments were done. In one type, Gam protein was produced by transient induction of the cells lysogenic for lambda cI857gam+. The presence of Gam protein, which inhibits RecBCD nuclease, enabled these cells to support the growth of a gene 2 mutant of bacteriophage T4 (T4 2). The lysogens overproducing the RecB subunit of RecBCD enzyme could titrate Gam protein and thus prevent the growth of T4 2. In contrast, the lysogens overproducing either RecC or RecD retained their capacity for growth of T4 2. It is therefore concluded that the RecB subunit is capable of binding Gam protein. In the second type of experiments, Gam protein was provided by derepressing the gamS gene on the plasmid pSF117 (S. A. Friedman and J. B. Hays, Gene 43:255-263, 1986). The presence of this protein did not interfere with the growth of wild-type cells (which were F-). Gam protein had a certain effect on recF mutants, whose doubling time became significantly longer. This suggests that the recF gene product plays an important role in maintenance of viability of the Gam-expressing cells. Gam protein exerted the most striking effect on growth of Hfr bacteria. In its presence, Hfr bacteria grew extremely slowly, but their ability to transfer DNA to recipient cells was not affected. We showed that the effect on growth of Hfr resulted from the interaction between the RecBCD-Gam complex and the integrated F plasmid.  相似文献   
15.
The cardinalfishes (Apogonidae) are a diverse clade of small, mostly reef-dwelling fishes, for which a variety of morphological data have not yielded a consistent phylogeny. We use DNA sequence to hypothesize phylogenetic relationships within Apogonidae and among apogonids and other acanthomorph families, to examine patterns of evolution including the distribution of a visceral bioluminescence system. In conformance with previous studies, Apogonidae is placed in a clade with Pempheridae, Kurtidae, Leiognathidae, and Gobioidei. The apogonid genus Pseudamia is recovered outside the remainder of the family, not as sister to the superficially similar genus Gymnapogon. Species sampled from the Caribbean and Western Atlantic (Phaeoptyx, Astrapogon, and some Apogon species) form a clade, as do the larger-bodied Glossamia and Cheilodipterus. Incidence of visceral bioluminescence is found scattered throughout the phylogeny, independently for each group in which it is present. Examination of the fine structure of the visceral bioluminescence system through histology shows that light organs exhibit a range of morphologies, with some composed of complex masses of tubules (Siphamia, Pempheris, Parapriacanthus) and others lacking tubules but containing chambers formed by folds of the visceral epithelium (Acropoma, Archamia, Jaydia, and Rhabdamia). Light organs in Siphamia, Acropoma, Pempheris and Parapriacanthus are distinct from but connected to the gut; those in Archamia, Jaydia, and Rhabdamia are simply portions of the intestinal tract, and are little differentiated from the surrounding tissues. The presence or absence of symbiotic luminescent bacteria does not correlate with light organ structure; the tubular light organs of Siphamia and chambered tubes of Acropoma house bacteria, those in Pempheridae and the other Apogonidae do not.  相似文献   
16.
S-Adenosyl-L-methionine: beyond the universal methyl group donor   总被引:1,自引:0,他引:1  
Roje S 《Phytochemistry》2006,67(15):1686-1698
S-Adenosyl-l-methionine (AdoMet or SAM) is a substrate in numerous enzyme-catalyzed reactions. It not only provides methyl groups in many biological methylations, but also acts as the precursor in the biosynthesis of the polyamines spermidine and spermine, of the metal ion chelating compounds nicotianamine and phytosiderophores, and of the gaseous plant hormone ethylene. AdoMet is also the source of catalytic 5'-deoxyadenosyl radicals, produced as reaction intermediates by the superfamily of radical AdoMet enzymes. This review aims to summarize the present knowledge of catalytic roles of AdoMet in plant metabolism.  相似文献   
17.
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide. In Escherichia coli and other bacteria, sequential deamination and reduction steps in riboflavin biosynthesis are catalyzed by RibD, a bifunctional protein with distinct pyrimidine deaminase and reductase domains. Plants have two diverged RibD homologs, PyrD and PyrR; PyrR proteins have an extra carboxyl-terminal domain (COG3236) of unknown function. Arabidopsis (Arabidopsis thaliana) PyrD (encoded by At4g20960) is known to be a monofunctional pyrimidine deaminase, but no pyrimidine reductase has been identified. Bioinformatic analyses indicated that plant PyrR proteins have a catalytically competent reductase domain but lack essential zinc-binding residues in the deaminase domain, and that the Arabidopsis PyrR gene (At3g47390) is coexpressed with riboflavin synthesis genes. These observations imply that PyrR is a pyrimidine reductase without deaminase activity. Consistent with this inference, Arabidopsis or maize (Zea mays) PyrR (At3g47390 or GRMZM2G090068) restored riboflavin prototrophy to an E. coli ribD deletant strain when coexpressed with the corresponding PyrD protein (At4g20960 or GRMZM2G320099) but not when expressed alone; the COG3236 domain was unnecessary for complementing activity. Furthermore, recombinant maize PyrR mediated NAD(P)H-dependent pyrimidine reduction in vitro. Import assays with pea (Pisum sativum) chloroplasts showed that PyrR and PyrD are taken up and proteolytically processed. Ablation of the maize PyrR gene caused early seed lethality. These data argue that PyrR is the missing plant pyrimidine reductase, that it is plastid localized, and that it is essential. The role of the COG3236 domain remains mysterious; no evidence was obtained for the possibility that it catalyzes the dephosphorylation that follows pyrimidine reduction.Riboflavin is the substrate for biosynthesis of the essential flavocoenzymes FMN and FAD, which occur in all kingdoms of life and have roles in diverse redox reactions as well as in other processes such as DNA repair, light sensing, and bioluminescence (Fischer and Bacher, 2005). Plants and many microorganisms can synthesize riboflavin, but humans and other animals cannot, so they must obtain it from the diet (Powers, 2003). Plant foods are important sources of riboflavin for humans, and the riboflavin pathway is a target for engineering biofortified crops (Fitzpatrick et al., 2012).Riboflavin biosynthesis proceeds via the same pathway in bacteria and plants (Fischer and Bacher, 2005; Roje, 2007). This pathway starts from GTP, which is converted by GTP cyclohydrolase II (named RibA in Escherichia coli) to the pyrimidine derivative 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-P. Deamination of the pyrimidine ring then yields 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5′-P, and subsequent reduction of the ribosyl moiety gives 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-P. After dephosphorylation, this product is condensed with 3,4-dihydroxy-2-butanone 4-P to give 6,7-dimethyl-8-ribityllumazine, whose dismutation yields riboflavin. Figure 1 shows the first four steps of this pathway.Open in a separate windowFigure 1.The first four steps of the riboflavin biosynthesis pathway in bacteria and plants. The enzymes involved are GTP cyclohydrolase II (RibA), pyrimidine deaminase (Deam), pyrimidine reductase (Red), and a specific phosphatase (Pase). Enzymes for which the plant genes are not known are colored red. Intermediates are as follows: 1, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-P; 2, 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5′-P; 3, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-P; 4, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione.In E. coli, the deamination and reduction steps are catalyzed by a single bifunctional enzyme, RibD, which has N-terminal deaminase and C-terminal reductase domains that retain their respective activities when expressed separately (Richter et al., 1997; Magalhães et al., 2008). The situation in plants seems superficially similar but is in fact more complex (Gerdes et al., 2012). The bidomain bacterial RibD protein has two types of homologs in plants (Fischer et al., 2004; Chatwell et al., 2006; Chen et al., 2006), here called PyrD and PyrR, both with apparent deaminase and reductase domains (Fig. 2A). Only PyrD, represented by At4g20960, has been studied biochemically; it was found to have pyrimidine deaminase but not reductase activity (Fischer et al., 2004). The function of PyrR, represented by At3g47390, is unknown, although it has been inferred to have reductase activity (Chatwell et al., 2006; Chen et al., 2006; Ouyang et al., 2010) and perhaps to lack deaminase activity (Ouyang et al., 2010). Another mystery surrounding PyrR proteins is the presence of an extra C-terminal domain of unknown function (COG3236 in the Clusters of Orthologous Groups database; Fig. 2A); this domain occurs as a stand-alone protein in many bacteria. One possibility is that it catalyzes the dephosphorylation that follows the pyrimidine reduction step in the pathway (Fig. 1). The phosphatase involved is most likely substrate specific, but it has not been identified in plants or any other organism (Roje, 2007; Gerdes et al., 2012), and genes for enzymes in the same pathway, especially for successive steps, are quite commonly fused (Suhre, 2007). A mutation (phs1) that deleted the COG3236 domain from Arabidopsis (Arabidopsis thaliana) PyrR resulted in a photosensitive phenotype that could be rescued by supplied FAD (Ouyang et al., 2010).Open in a separate windowFigure 2.Structure and phylogeny of plant PyrD and PyrR proteins. A, Domain architectures. The examples shown are Arabidopsis At4g20960 and At3g47390; the predicted plastid targeting peptide (TP) varies in length between species. B, Phylogenetic tree of PyrD and PyrR proteins. Sequences were aligned with ClustalW; the tree was built by the neighbor-joining method with MEGA5. Bootstrap values (%) for 1,000 replicates are next to the nodes. Only the tree topology is shown. Note that the PyrD proteins of green algae (underlined) lack a reductase domain. C, Alignments showing the conservation of the zinc-binding residues (arrowheads) in the deaminase domain of PyrD but not PyrR proteins and the conservation of the predicted substrate-binding residues (asterisks) in the reductase domain of PyrR but not PyrD proteins. The deaminase sequences correspond to residues 45 to 85 of B. subtilis RibD (synonym RibG); the reductase sequences correspond to residues 150 to 210 and (separated by dots) 288 to 292 of B. subtilis RibD. Identical zinc- or substrate-binding residues are black, and conservative replacements are gray. Dashes indicate gaps that maximize the alignment.The plant riboflavin synthesis pathway is considered to be plastidial (Roje, 2007), but this location is based almost solely on bioinformatics and high-throughput proteome analyses (Gerdes et al., 2012). In only one case is there more definitive experimental support: in vitro chloroplast import data for the pathway’s penultimate enzyme, 6,7-dimethyl-8-ribityllumazine synthase (Jordan et al., 1999). Similarly, clear genetic support for the function of most plant riboflavin synthesis enzymes is lacking (Gerdes et al., 2012), the exception being an Arabidopsis RibA homolog (Hedtke and Grimm, 2009).The work reported here established, using maize (Zea mays) and Arabidopsis, that PyrR is indeed the missing pyrimidine reductase, that it lacks deaminase activity, and that its COG3236 domain is not essential for pyrimidine reductase activity and most likely lacks phosphatase activity. We also demonstrated the import of PyrR and PyrD into chloroplasts in vitro and confirmed that the gene for PyrR is essential.  相似文献   
18.
We have developed a novel HPLC-based fluorometric assay for serine hydroxymethyltransferase activity. In this assay, the 5,10-CH(2)-H(4)PteGlu formed by serine hydroxymethyltransferase activity is reduced to 5-CH(3)-H(4)PteGlu using NaBH(4). Then the fluorescent assay components are separated by reversed-phase chromatography under isocratic conditions and 5-CH(3)-H(4)PteGlu is quantified by comparison with standards. We show that this assay can be used to measure serine hydroxymethyltransferase activity at 10(-8) to 10(-3)M (6R,S)-H(4)PteGlu.  相似文献   
19.
One-carbon flux into methionine and S-adenosylmethionine (AdoMet) is thought to be controlled at the methylenetetrahydrofolate reductase (MTHFR) step. Mammalian MTHFRs are inhibited by AdoMet in vitro, and it has been proposed that methyl group biogenesis is regulated in vivo by this feedback loop. In this work, we used metabolic engineering in the yeast Saccharomyces cerevisiae to test this hypothesis. Like mammalian MTHFRs, the yeast MTHFR encoded by the MET13 gene is NADPH-dependent and is inhibited by AdoMet in vitro. This contrasts with plant MTHFRs, which are NADH-dependent and AdoMet-insensitive. To manipulate flux through the MTHFR reaction in yeast, the chromosomal copy of MET13 was replaced by an Arabidopsis MTHFR cDNA (AtMTHFR-1) or by a chimeric sequence (Chimera-1) comprising the yeast N-terminal domain and the AtMTHFR-1 C-terminal domain. Chimera-1 used both NADH and NADPH and was insensitive to AdoMet, supporting the view that the C-terminal domain is responsible for AdoMet inhibition. Engineered yeast expressing Chimera-1 accumulated 140-fold more AdoMet and 7-fold more methionine than did the wild-type and grew normally. Yeast expressing AtMTHFR-1 accumulated 8-fold more AdoMet. This is the first in vivo evidence that the AdoMet sensitivity and pyridine nucleotide preference of MTHFR control methylneogenesis. (13)C labeling data indicated that glycine cleavage becomes a more prominent source of one-carbon units when Chimera-1 is expressed. Possibly related to this shift in one-carbon fluxes, total folate levels are doubled in yeast cells expressing Chimera-1.  相似文献   
20.
Although duckweed Lemna minor L. is a known accumulator of cadmium, detailed studies on its physiological and/or defense responses to this metal are still lacking. In this study, the effects of 10 μM CdCl2 on Lemna minor were monitored after 6 and 12 days of treatment, while growth was estimated every 2 days. Cadmium treatment resulted in progressive accumulation of the metal in the plants and led to a decrease in the growth rate to 54% of the control value. The metal also considerably impaired chloroplast ultrastructure and caused a significant reduction in pigment content, i.e., at day 12, by 30 and 34% for chlorophylls a and b, and by 25% for carotenoids. During cadmium treatment, the contents of malondialdehyde and endogenous H2O2 progressively increased (rising 77 and 46% above the controls by day 12), indicating that cadmium induced considerable oxidative stress. On the other hand, higher activities of pyrogallol peroxidase (PPX), ascorbate peroxidase (APX) and catalase (CAT), as well as the induction of a new APX isoform, in cadmium-treated plants, clearly showed activation of an antioxidative response. At day 6, only PPX activity was significantly above the controls (15%), while, at day 12, PPX, APX and CAT activities were increased (74, 78 and 63%). Cadmium also led to accumulation of the heat shock protein 70 (HSP70) and induced an additional isoform of this protein. The obtained results suggest that cadmium (10 μM) is phytotoxic to Lemna minor, inducing oxidative stress, and that antioxidative enzymes and HSP70 play important roles in the defense against cadmium toxicity. M. Tkalec and T. Prebeg contributed equally to this work  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号