首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   3篇
  144篇
  2022年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1994年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1966年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
81.
Some technological and physiological aspects were analysed during seed storage of holm oak (Quercus ilex L.), a typical Mediterranean recalcitrant species. Considering the mild dormancy and desiccation sensitivity of these seeds, the influence of the storage environment on viability was examined. Acorns were maintained at low temperature and at high moisture content either inside thin polyethylene bags or mixed with peat in a bin. Storage in polyethylene bags, if compared with peat treatment, maintained optimal seed quality parameters. The effects of the two treatments on some physiological parameters were analysed during 1-year seed storage. Acorns stored in a bin with peat started to germinate early and exhibited a more rapid seed deterioration caused by metabolism-linked oxidative damage. The latter phenomenon was linked to a higher respiration and H2O2 level, induction of catalase activity, as well as lowered glutathione pool and ATP content. In addition, a more oxidized redox poise was observed. On the contrary, the plastic film of polyethylene, limiting gaseous exchanges, maintained acorn metabolic activity at low levels and allowed the accumulation of ethylene inside the storage atmosphere. These factors, inducing a dormant-like state, could have played a crucial role in prolonging seed storage.  相似文献   
82.
An assay to estimate the amount of glucose oxidase immobilised as a monolayer onto a flat surface is reported. This method is based on the electrochemical detection of the flavin adenine dinucleotide (FAD) cofactor released by the immobilised enzyme in acid solutions. FAD concentration in the acid solution was measured by amperometry, using a flow injection analysis (FIA) system equipped with a wall-jet electrode, and with a sensitivity of (9.2+/-2.0)x10(-2) nA/nM. By this method, the amount of glucose oxidase molecules present in a monolayer deposited on a silanised glass slide was easily detected, in which the detection limit is more than one order of magnitude lower than the maximum loading of the surface with an ordered monolayer of glucose oxidase.  相似文献   
83.
Severe hyperbilirubinemia causes neurological damage both in humans and rodents. The hyperbilirubinemic Gunn rat shows a marked cerebellar hypoplasia. More recently bilirubin ability to arrest the cell cycle progression in vascular smooth muscle, tumour cells, and, more importantly, cultured neurons has been demonstrated. However, the involvement of cell cycle perturbation in the development of cerebellar hypoplasia was never investigated before. We explored the effect of sustained spontaneous hyperbilirubinemia on cell cycle progression and apoptosis in whole cerebella dissected from 9 day old Gunn rat by Real Time PCR, Western blot and FACS analysis. The cerebellum of the hyperbilirubinemic Gunn rats exhibits an increased cell cycle arrest in the late G0/G1 phase (p < 0.001), characterized by a decrease in the protein expression of cyclin D1 (15%, p < 0.05), cyclin A/A1 (20 and 30%, p < 0.05 and 0.01, respectively) and cyclin dependent kinases2 (25%, p < 0.001). This was associated with a marked increase in the 18 kDa fragment of cyclin E (67%, p < 0.001) which amplifies the apoptotic pathway. In line with this was the increase of the cleaved form of Poly (ADP-ribose) polymerase (54%, p < 0.01) and active Caspase3 (two fold, p < 0.01). These data indicate that the characteristic cerebellar alteration in this developing brain structure of the hyperbilirubinemic Gunn rat may be partly due to cell cycle perturbation and apoptosis related to the high bilirubin concentration in cerebellar tissue mainly affecting granular cells. These two phenomena might be intimately connected.  相似文献   
84.
Apple trees (Malus domestica Borkh.) may be affected by apple proliferation (AP), caused by ‘Candidatus Phytoplasma mali’. Some plants can spontaneously recover from the disease, which implies the disappearance of symptoms through a phenomenon known as recovery. In this article it is shown that NAD(P)H peroxidases of leaf plasma membrane‐enriched fractions exhibited a higher activity in samples from both AP‐diseased and recovered plants. In addition, an increase in endogenous SA was characteristic of the symptomatic plants, since its content increased in samples obtained from diseased apple trees. In agreement, phenylalanine ammonia lyase (PAL) activity, a key enzyme of the phenylpropanoid pathway, was increased too. Jasmonic acid (JA) increased only during recovery, in a phase subsequent to the pathological state, and in concomitance to a decline of salicylic acid (SA). Oxylipin pathway, responsible for JA synthesis, was not induced during the development of AP‐disease, but it appeared to be stimulated when the recovery occurred. Accordingly, lipoxygenase (LOX) activity, detected in plasma membrane‐enriched fractions, showed an increase in apple leaves obtained from recovered plants. This enhancement was paralleled by an increase of hydroperoxide lyase (HPL) activity, detected in leaf microsomes, albeit the latter enzyme was activated in either the disease or recovery conditions. Hence, a reciprocal antagonism between SA‐ and JA‐pathways could be suggested as an effective mechanism by which apple plants react to phytoplasma invasions, thereby providing a suitable defense response leading to the establishment of the recovery phenomenon.  相似文献   
85.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   
86.
Salicylate-collapsed membrane potential in pea stem mitochondria   总被引:4,自引:0,他引:4  
Salicylate, acetylsalicylate, benzoate and 3,5-diiodosalicylate were examined for their effects on pea ( Pisum sativum L. cv. Alaska) stem mitochondria and on a tonoplast-enriched fraction. Salicylate collapsed the transmembrane electrochemical potential of mitochondria and the ATP-dependent proton gradient of the tonoplast-enriched vesicle preparation. Benzoate and acetylsalicylate did not show any effect, while 3,5-diiodosalicylate inhibited both basal O2 consumption and ATPase activity of pea mitochondria. Salicylate seems to act as a protonophore. However, its effect is evident only at concentrations higher than those required by classical protonophores and, in addition, can be abolished after removing salicylate from the incubation medium. The activity of salicylate appears linked to the presence of the free phenolic hydroxyl on the benzene ring.  相似文献   
87.
In addition to well-known cell wall peroxidases, there is now evidence for the presence of this enzyme at the plasma membrane of the plant cells (surface peroxidase). Both are able to catalyze, through a chain of reactions involving the superoxide anion, the oxidation of NADH to generate hydrogen peroxide. The latter is oxidized by other wall-bound peroxidases to convert cinnamoyl alcohols into radical forms, which, then polymerize to generate lignin. However, there are other enzymes at the surface of plasma membranes capable of generating hydrogen peroxide (cell wall polyamine oxidase), superoxide anion (plasma membrane Turbo reductase), or both (plasma membrane flavoprotein?). These enzymes utilize NAD(P)H as a substrate. The Turbo reductase and the flavoprotein catalyze the univalent reduction of Fe3+ and then of O2 to produce Fe2+ and \(O_2^{\bar \cdot } \) , respectively. The superoxide anion, in the acidic environment of the cell wall, may then dismutate to H2O2. These superoxide anion- and hydrogen peroxide-generating systems are discussed in relation to their possible involvement in physiological and pathological processes in the apoplast of plant cells.  相似文献   
88.
In the adult rat, the duodenal tissue of both sexes can convert progesterone to 17-hydroxyprogesterone, androstenedione and testosterone. The transition from C21 to C19 steroids is apparently controlled by the same cytochrome P450c17 expressed in the testis, which catalyzes both 17-hydroxylation and C-17,20 bond scission at a single bifunctional active site. The kinetic parameters of this enzyme were measured at the steady state for both reactions using [1,2-3H]progesterone and [1,2-3H]17-hydroxyprogesterone as substrates. In the testis and male and female duodena, the Km values for progesterone 17-hydroxylation were 14.2, 23.8 and 23.2 nM, whereas the Vmax values were 105, 3.5 and 3.1 pmol/mg protein/min, respectively. With respect to C-17,20 lyase activity, the Km values for exogenous 17-hydroxyprogesterone were 525, 675 and 637 nM, whereas the Vmax values were 283, 7.8 and 7.8 pmol/mg protein/min, respectively. However, when the Km values were calculated with respect to intermediate 17-hydroxyprogesterone formed from progesterone, they were similar to the Km values for 17-hydroxylase, being 15, 31.4 and 24.8 nM, whereas the Vmax values were 26.3, 2 and 1.8 pmol/mg protein/min, respectively. The similarity of Km values is due to the fact that the relative androgen formation efficiency (bond scission events/total 17-hydroxylation events ratio) was remarkably constant in both testicular and duodenal incubates, irrespective of progesterone concentration. Efficiency values were 2-fold higher in duodenal tissue (0.54) than in testis (0.25). Estradiol-17β inhibited 17-hydroxylation but not bond scission on intermediate 17-hydroxyprogesterone, because it did not affect the efficiency value. Rat duodenal P450c17 has the same substrate affinity, a lower specific activity and a higher androgen formation efficiency than testicular P450c17.  相似文献   
89.
Two protein kinases active on casein and phosvitin were partially purified from the soluble fraction of ejaculated bovine spermatozoa. They were operationally termed casein kinase A and B based on the order of their elution from a phosphocellulose column. CK-A showed an approximate molecular mass of 38 kDa, and it phosphorylated serine residues of casein and phosvitin utilizing ATP as a phosphate donor (Km 19 microM). Enzyme activity was maximal in the presence of 10 mM MgCl2, whereas it decreased in the presence of spermine, polylysine, quercetin, and NaCl (20-250 mM). CK-B seemed to have a monomeric structure of about 41 kDa; it underwent autophosphorylation and cross-reacted with polyclonal antibodies raised against recombinant alpha, but not beta, subunit of human type 2 casein kinase. It phosphorylated both serine and threonine residues of casein and phosvitin, utilizing ATP (Km 12 microM) but not GTP as a phosphate donor. Threonine was more affected in the phosphorylated phosvitin than in the partially dephosphorylated substrate. CK-B was active toward the synthetic peptide Ser-(Glu)5 and calmodulin (in the latter case, in the presence of polylysine), and it was activated by spermine, polylysine, MgCl2 (30 mM), and NaCl (20-400 mM). The activity of the enzymes was not affected by cAMP, or the heat-stable inhibitor of the cAMP-dependent protein kinase, or calcium.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号