首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  42篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
11.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   
12.
The timing of the commencement of photosynthesis (P*) in spring is an important determinant of growing‐season length and thus of the productivity of boreal forests. Although controlled experiments have shed light on environmental mechanisms triggering release from photoinhibition after winter, quantitative research for trees growing naturally in the field is scarce. In this study, we investigated the environmental cues initiating the spring recovery of boreal coniferous forest ecosystems under field conditions. We used meteorological data and above‐canopy eddy covariance measurements of the net ecosystem CO2 exchange (NEE) from five field stations located in northern and southern Finland, northern and southern Sweden, and central Siberia. The within‐ and intersite variability for P* was large, 30–60 days. Of the different climate variables examined, air temperature emerged as the best predictor for P* in spring. We also found that ‘soil thaw’, defined as the time when near‐surface soil temperature rapidly increases above 0°C, is not a useful criterion for P*. In one case, photosynthesis commenced 1.5 months before soil temperatures increased significantly above 0°C. At most sites, we were able to determine a threshold for air‐temperature‐related variables, the exceeding of which was required for P*. A 5‐day running‐average temperature (T5) produced the best predictions, but a developmental‐stage model (S) utilizing a modified temperature sum concept also worked well. But for both T5 and S, the threshold values varied from site to site, perhaps reflecting genetic differences among the stands or climate‐induced differences in the physiological state of trees in late winter/early spring. Only at the warmest site, in southern Sweden, could we obtain no threshold values for T5 or S that could predict P* reliably. This suggests that although air temperature appears to be a good predictor for P* at high latitudes, there may be no unifying ecophysiological relationship applicable across the entire boreal zone.  相似文献   
13.
Terrestrial dissolved organic carbon (DOC) provides an external carbon source to lake ecosystems. However, there is ongoing debate about whether external DOC that enters a lake can pass up the food web to support top consumers. We show, from experimental manipulation of a whole lake, that externally loaded DOC can contribute appreciably to fish biomass. Monthly additions of cane sugar with a distinct carbon stable isotope value during 2 years rapidly enriched the 13C content of zooplankton and macroinvertebrates, with a more gradual 13C enrichment of fish. After sugar addition stopped, the 13C content of consumers reverted towards original values. A simple isotope mixing model indicated that by the end of the sugar addition almost 20% of fish carbon in the lake was derived from the added sugar. Our results provide the first direct experimental demonstration at relevant ecological spatial and temporal scales that externally loaded DOC to lakes can indeed transfer to top consumers.  相似文献   
14.
15.
Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water‐ and light‐use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy‐covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within‐canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem‐scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry‐canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m?2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m?2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m?2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m?2). This finding emphasizes the significance of stand‐replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light‐saturated water‐use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.  相似文献   
16.
Ecosystems - We quantified the role of spatially varying vegetation composition in seasonal and interannual changes in a boreal bog’s CO2 uptake. We divided the spatially heterogeneous site...  相似文献   
17.
A severe oxygen deficit induced a fish kill in the eutrophicated two-basin Lake Äimäjärvi in southern Finland during winter 2002–2003, resulting in cascading effects on the lower trophic levels of the lake. Pikeperch disappeared from the lake and bleak and white bream decreased to low numbers. The recovery of the populations of other species started immediately when strong year-classes of roach and perch appeared in summer 2003 and onwards. A sharp increase in the growth of perch and roach was recorded, and perch became the dominant fish species during 2004–2006. Consequent responses after the fish kill included increased Secchi depth, expansion of submerged macrophytes, decreased nutrient concentrations and reduction of Cyanophyta from the more eutrophic northern basin of the lake, and a temporary increase in the size of Daphnia in the early summer 2003. However, the ecosystem of the lake returned gradually to the earlier structure and level of eutrophication. Bluegreen algae have returned since 2005, the water has become more turbid, macrophytes declined in 2007 and the fish community was again dominated by small cyprinid fishes in 2008.  相似文献   
18.
Water and solute flows in the coupled system of xylem and phloem were modeled together with predictions for xylem and whole stem diameter changes. With the model we could produce water circulation between xylem and phloem as presented by the Münch hypothesis. Viscosity was modeled as an explicit function of solute concentration and this was found to vary the resistance of the phloem sap flow by many orders of magnitude in the possible physiological range of sap concentrations. Also, the sensitivity of the predicted phloem translocation to changes in the boundary conditions and parameters such as sugar loading, transpiration, and hydraulic conductivity were studied. The system was found to be quite sensitive to the sugar-loading rate, as too high sugar concentration, (approximately 7 MPa) would cause phloem translocation to be irreversibly hindered and soon totally blocked due to accumulation of sugar at the top of the phloem and the consequent rise in the viscosity of the phloem sap. Too low sugar loading rate, on the other hand, would not induce a sufficient axial water pressure gradient. The model also revealed the existence of Münch “counter flow”, i.e., xylem water flow in the absence of transpiration resulting from water circulation between the xylem and phloem. Modeled diameter changes of the stem were found to be compatible with actual stem diameter measurements from earlier studies. The diurnal diameter variation of the whole stem was approximately 0.1 mm of which the xylem constituted approximately one-third.  相似文献   
19.
20.
Fungus‐growing termites of the subfamily Macrotermitinae together with their highly specialized fungal symbionts (Termitomyces) are primary decomposers of dead plant matter in many African savanna ecosystems. The termites provide crucial ecosystem services also by modifying soil properties, translocating nutrients, and as important drivers of plant succession. Despite their obvious ecological importance, many basic features in the biology of fungus‐growing termites and especially their fungal symbionts remain poorly known, and no studies have so far focused on possible habitat‐level differences in symbiont diversity across heterogeneous landscapes. We studied the species identities of Macrotermes termites and their Termitomyces symbionts by excavating 143 termite mounds at eight study sites in the semiarid Tsavo Ecosystem of southern Kenya. Reference specimens were identified by sequencing the COI region from termites and the ITS region from symbiotic fungi. The results demonstrate that the regional Macrotermes community in Tsavo includes two sympatric species (M. subhyalinus and M. michaelseni) which cultivate and largely share three species of Termitomyces symbionts. A single species of fungus is always found in each termite mound, but even closely adjacent colonies of the same termite species often house evolutionarily divergent fungi. The species identities of both partners vary markedly between sites, suggesting hitherto unknown differences in their ecological requirements. It is apparent that both habitat heterogeneity and disturbance history can influence the regional distribution patterns of both partners in symbiosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号