首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   5篇
  1993年   1篇
  1983年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
31.
32.
North African coastal lagoons are unique ecosystems that often suffer degradation due to human activities. Therefore, monitoring methods are required to identify stressors and assist with the management of these valuable and often understudied ecosystems. A synthetic indicator of water ecological quality would be desirable for regular monitoring of these ecosystems under pressure. In 2008 an optical procedure was developed and applied in Ghar El Melh, a Tunisian lagoon which has been increasingly impacted by pollutant loading, especially from agriculture. In situ hyperspectral irradiance was measured at several stations, from which the apparent optical properties (AOPs), namely the irradiance attenuation coefficient K(λ) and the reflectance ratio R(λ), were obtained in order to relate them to water composition, in terms of light-attenuating substances (LASs). The significant relationships observed between R and LAS values enabled the application of a hyperspectral optical classification, which effectively highlighted threatened sectors of the lagoon. The pattern of differing water quality across the lagoon system that was derived from the hyperspectral classification agreed well with that obtained from a conventional optical classification that included AOPs and LASs. We suggest that hyperspectral analysis and classification is a useful monitoring tool for the assessment of change in coastal lagoons, and perhaps also in other shallow-water ecosystems.  相似文献   
33.
The transpiration rate of individual 6-day-old oat plants was forced to oscillate by cyclic sine-shaped changes in the leaf irradiance (frequency 2 cycles h?1, amplitude and average value 1.4 mW cm?2, red light 620–800 nm). By means of a specially designed cuvette with three chambers the transpiration rate from three different segments of the leaf could be measured simultaneously. The leaf segments were illuminated individually and the illumination on each leaf segment could be modulated independently. The experiments showed that there was a strong correlation between the transpiration rates from the different leaf segments, dependent on a coupling mechanism in the plant. The coupling phenomenon disappeared when the root system was eliminated or when the water potential of the root medium was lowered. It was experimentally shown that CO2 diffusion in the leaf could not be the primary cause for the coupling. Therefore the stomatal dependence on the leaf water potential was considered the most probable reason for the coupling. The frequency of the forcing light cycles could be linearly changed during an experiment and this swept-frequency technique was used to obtain a frequency response of one single oat plant. The technique made it also possible to study the strength of the coupling between different leaf segments.  相似文献   
34.
35.
?Eumysops is a peculiar representative of the currently tropical family Echimyidae, which evolved in increasingly dry and cold Plio–Pleistocene environments of southern South America. The results of a systematic and stratigraphic review of the genus, and of phylogenetic analyses based on both morphology and a combined morphological–molecular dataset in the context of extant representatives, are presented here. Recognised diversity includes four previously described species plus a new one from the late Pliocene. These species form a well-supported monophyletic clade, sister to the late Miocene ?Pampamys and the extant Thrichomys. The position of ?Eumysops–?PampamysThrichomys in a major clade including non-‘eumysopine’ echimyids constrains the traditional taxon Eumysopinae only to these three genera. Phylogeny and stratigraphic distribution of ?Eumysops species suggest an essentially cladogenetic evolutionary pattern. Beyond this, a gradual directional change, involving increase in size and in molar hypsodonty, is shown by ?Eumysops chapalmalensis as part of a late Pliocene faunal turnover interpreted as a local representation of the 2.5-Ma cooling global event. Distinctive skeletal and dental anatomy of ?Eumysops, including large orbits, shortened braincase, marked hypsodonty and postcranial specialisations, would be a result of its southern history related to a particular palaeoclimatic context.  相似文献   
36.
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号