首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   22篇
  2021年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   10篇
  2012年   10篇
  2011年   13篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   10篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   8篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1939年   2篇
排序方式: 共有209条查询结果,搜索用时 93 毫秒
81.
Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity. OAH and OAH-like proteins form subclass of the isocitrate lyase/PEP mutase enzyme superfamily, which is ubiquitous present filamentous fungi. Analysis of function-specific residues using a superfamily-based approach revealed an active site serine as a possible sequence marker for OAH activity. We propose that presence of this serine in family members correlates with presence of OAH activity whereas its absence correlates with absence of OAH. This hypothesis was tested by carrying out a serine mutagenesis study with the OAH from the fungal oxalic acid producer Botrytis cinerea and the OAH active plant petal death protein as test systems.  相似文献   
82.
The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution.  相似文献   
83.
We used isomeric fluorotoluenes as model substrates to study the catabolism of toluene by five deuteromycete fungi and one ascomycete fungus capable of growth on toluene as the sole carbon and energy source, as well as by two fungi (Cunninghamella echinulata and Aspergillus niger) that cometabolize toluene. Whole cells were incubated with 2-, 3-, and 4-fluorotoluene, and metabolites were characterized by 19F nuclear magnetic resonance. Oxidation of fluorotoluene by C. echinulata was initiated either at the aromatic ring, resulting in fluorinated o-cresol, or at the methyl group to form fluorobenzoate. The initial conversion of the fluorotoluenes by toluene-grown fungi occurred only at the side chain and resulted in fluorinated benzoates. The latter compounds were the substrate for the ring hydroxylation and, depending on the fluorine position, were further metabolized up to catecholic intermediates. From the 19F nuclear magnetic resonance metabolic profiles, we propose that diverse fungi that grow on toluene assimilate toluene by an initial oxidation of the methyl group.  相似文献   
84.
Recent work on biosurfactant release by thermophilic dairy streptococci is reviewed. There is a suggestion thatStreptococcus thermophilus isolates may release biosurfactants that stimulate detachment of already-adhering cells and leave an anti-adhesive coating on a substratum. A previously published rapid screening method is described for the identification of biosurfactant-releasing microorganisms, and growth medium supplements to enhance biosurfactant release by thermophilic dairy streptococci are reported. New experimental work described includes the isolation and purification of biosurfactants from dairy isolates by thin layer chromatography. Many compounds isolated were extremely surface-active and reduced the water surface tension to values around 30 mJ m–2 at a concentration of 10 mg ml–1. Most importantly, the thin layer chromatograms of various isolates resembled each other, and an adsorbed purified compound from one isolate retarded the deposition to glass of another isolate by a factor of two. Provided our findings implicate that these biosurfactants could also be adsorbed to heat exchanger plates in pasteurizers and thereby retard colonization by thermophilic streptococci, these compounds may have major economic implications. Further work is required, however.  相似文献   
85.
A spectrofluorometer is described consisting of an excitation source, optics, detector and time resolving electronics. The excitation source consists of a mode-locked Ar ion laser, synchronously pumps a dye laser, followed by a frequency doubling device. The repetition frequency of the U.V. pulses (FWHM some ps) has been reduced by an extra-cavity electro-optical modulator. Provisions have been made in the optical configuration to determine both time-resolved fluorescence spectra and fluorescence anisotropy decay curves. The commercially avialable electronics have been optimized for maximum time resolution. The spectral output of the excitation source is confined between 280 and 310 nm, which encompasses the region for eliciting protein fluorescence. The performance of the complete system has been tested with single lifetime standards line p-terphenyl in cyclohexane or with N-acetyl-L-tryptophanamide in pH 7.5 buffer. Serum albumins from human and bovine sources have been employed as examples for time resolved fluorescence spectra and for the demonstration of anisotropy decay curves. Using these methods protein dynamics in the (sub)nanosecond time region can be directly explored.  相似文献   
86.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   
87.
The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by 13C, 15N, and 31P NMR techniques. The FAD prosthetic group was selectively enriched in 13C and 15N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The polarization of the isoalloxazine ring as a whole is, however, much more comparable to that of free flavin in a polar and protic environment than to free flavin in an apolar environment. The polarization of the ring system can be ascribed to strong hydrogen bonds between the apoprotein and the two carbonyl groups. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atoms strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. In the dithionite-reduced enzyme, the ring system is bent at the N(5) position. Due to the bending of the N(5) atom and the sp2 hybridized N(10) atom, electron density from the N(10) atom is reallocated at the C(4) carbonyl group. In contrast, in the substrate-reduced enzyme the N(5) atom is almost completely sp2 hybridized, yielding a rather planar isoalloxazine ring.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
88.
The time-resolved fluorescence characteristics of tryptophan in flavodoxin isolated from the sulfate-reducing bacteria Desulfovibrio vulgaris and Desulfovibrio gigas have been examined. By comparing the results of protein preparations of normal and FMN-depleted flavodoxin, radiationless energy transfer from tryptophan to FMN has been demonstrated. Since the crystal structure of the D. vulgaris flavodoxin is known, transfer rate constants from the two excited states 1 L a and 1 L b can be calculated for both tryptophan residues (Trp 60 and Trp 140). Residue Trp 60, which is very close to the flavin, transfers energy very rapidly to FMN, whereas the rate of energy transfer from the remote Trp 140 to FMN is much smaller. Both tryptophan residues have the indole rings oriented in such a way that transfer will preferentially take place from the 1 L a excited state. The fluorescence decay of all protein preparations turned out to be complex, the parameter values being dependent on the emission wavelength. Several decay curves were analyzed globally using a model in which tryptophan is involved in some nanosecond relaxation process. A relaxation time of about 2 ns was found for both D. gigas apo- and holoflavodoxin. The fluorescence anisotropy decay of both Desulfovibrio FMN-depleted flavodoxins is exponential, whereas that of the two holoproteins is clearly non-exponential. The anisotropy decay was analyzed using the same model as that applied for fluorescence decay. The tryptophan residues turned out to be immobilized in the protein. A time constant of a few nanoseconds results from energy transfer from tryptophan to flavin, at least for D. gigas flavodoxin. The single tryptophan residue in D. gigas flavodoxin occupies a position in the polypeptide chain remote from the flavin prosthetic group. Because of the close resemblance of steady-state and time-resolved fluorescence properties of tryptophan in both flavodoxins, the center to center distance between tryptophan and FMN in D. gigas flavodoxin is probably very similar to the distance between Trp 140 and FMN in D. vulgaris flavodoxin (i.e. 20 Å). Offprint requests to: A.J.W.G. Visser  相似文献   
89.
Desulfovibrio vulgaris apoflavodoxin has been reconstituted with 15N and 13C-enriched riboflavin 5'-phosphate. For the first time all carbon atoms of the isoalloxazine ring of the protein-bound prosthetic group have been investigated. The reconstituted protein was studied in the oxidized and in the two-electron-reduced state. The results are interpreted in terms of specific interactions between the apoprotein and the prosthetic group, and the chemical structure of protein-bound FMN. In the oxidized state weak hydrogen bonds exist between the apoprotein and the N(5), N(3) and O(4 alpha) atoms of FMN. The N(1) and O(2 alpha) atoms of FMN form strong hydrogen bonds. The isoalloxazine ring of FMN is strongly polarized and the N(10) atom shows an increased sp2 hybridisation compared to that of free FMN in aqueous solution. The N(3)-H group is not accessible to bulk solvent, as deduced from the coupling constant of the N(3)-H group. In the reduced state the hydrogen bond pattern is similar to that in the oxidized state and in addition a strong hydrogen bond is observed between the N(5)-H group of FMN and the apoprotein. The reduced prosthetic group possesses a coplanar structure and is ionized. The N(3)-H and N(5)-H groups are not accessible to solvent water. Two-electron reduction of the protein leads to a large electron density increase in the benzene subnucleus of bound FMN compared to that in free FMN. The results are discussed in relation to the published crystallographic data on the protein.  相似文献   
90.
The attack of fungal cell walls by plant chitinases is an important plant defense response to fungal infection. Anti-fungal activity of plant chitinases is largely restricted to chitinases that contain a noncatalytic, plant-specific chitin-binding domain (ChBD) (also called Hevein domain). Current data confirm that the race-specific elicitor AVR4 of the tomato pathogen Cladosporium fulvum can protect fungi against plant chitinases, which is based on the presence of a novel type of ChBD in AVR4 that was first identified in invertebrates. Although these two classes of ChBDs (Hevein and invertebrate) are sequentially unrelated, they share structural homology. Here, we show that the chitin-binding sites of these two classes of ChBDs have different topologies and characteristics. The K(D), DeltaH, and DeltaS values obtained for the interaction between AVR4 and chito-oligomers are comparable with those obtained for Hevein. However, the binding site of AVR4 is larger than that of Hevein, i.e. AVR4 interacts strictly with chitotriose, whereas Hevein can also interact with the monomer N-acetylglucosamine. Moreover, binding of additional AVR4 molecules to chitin occurs through positive cooperative protein-protein interactions. By this mechanism AVR4 is likely to effectively shield chitin on the fungal cell wall, preventing the cell wall from being degraded by plant chitinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号