首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   52篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   31篇
  2014年   23篇
  2013年   44篇
  2012年   47篇
  2011年   43篇
  2010年   27篇
  2009年   30篇
  2008年   23篇
  2007年   35篇
  2006年   37篇
  2005年   29篇
  2004年   24篇
  2003年   36篇
  2002年   35篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   15篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
571.
The ARF tumor suppressor signals through p53 and other poorly defined anti-proliferative pathways to block carcinogenesis. In a search for new regulators of ARF signaling, we discovered a novel nuclear protein that we named NIAM (nuclear interactor of ARF and MDM2) for its ability to bind both ARF and the p53 antagonist MDM2. NIAM protein is normally expressed at low to undetectable levels in cells because of, at least in part, MDM2-mediated ubiquitination and proteasomal degradation. When reintroduced into cells, NIAM activated p53, caused a G1 phase cell cycle arrest, and collaborated with ARF in an additive fashion to suppress proliferation. Notably, NIAM retains growth inhibitory activity in cells lacking ARF and/or p53, and knockdown experiments revealed that it is not essential for ARF-mediated growth inhibition. Thus, NIAM and ARF act in separate anti-proliferative pathways that intersect mechanistically and suppress growth more effectively when jointly activated. Intriguingly, silencing of NIAM accelerated chromosomal instability, and microarray analyses showed reduced NIAM mRNA expression in numerous primary human tumors. This study identifies a novel protein with tumor suppressor-like behaviors and functional links to ARF-MDM2-p53 signaling.  相似文献   
572.
French populations of the codling moth Cydia pomonella (L.) (Lepidoptera, Tortricidae), a major pest in apple and pear orchards, have developed resistance to different classes of insecticides including the benzoylurea diflubenzuron, a chitin synthesis inhibitor. Ovicidal tests performed on two susceptible strains and one strain selected for its resistance to diflubenzuron revealed the same order of magnitude in resistance ratios to this compound (30-fold) and two other benzoylureas teflubenzuron and flufenoxuron (22- and 11-fold, respectively). Field rates of these three compounds induced a 45–55% decrease in hatching in the resistant strain, compared to over 90% in the susceptible insects. Despite a 52-fold ovicidal resistance ratio to the juvenile hormone analog fenoxycarb, this compound induced a 85% decrease in hatching in the resistant strain. Conversely the newly hatched larvae of the resistant strain exhibited a 45 000-, 33- and 2.1-fold resistance ratio to diflubenzuron, teflubenzuron and flufenoxuron, respectively. The latter value was not significant, and the field rate of flufenoxuron killed over 97% of the resistant larvae while diflubenzuron had no effect. This lack of relationship between ovicidal and larvicidal resistance may be due to different transport properties together with differential enzymatic metabolization. Our results may limit the validity of substitution instars, which approach is frequently used for resistance monitoring. More importantly for resistance management, the resistance of different target instars to each compound has to be considered when establishing control strategies.  相似文献   
573.
Respiratory viruses such as influenza viruses, respiratory syncytial virus (RSV), and coronaviruses initiate infection at the mucosal surfaces of the upper respiratory tract (URT), where the resident respiratory microbiome has an important gatekeeper function. In contrast to gut-targeting administration of beneficial bacteria against respiratory viral disease, topical URT administration of probiotics is currently underexplored, especially for the prevention and/or treatment of viral infections. Here, we report the formulation of a throat spray with live lactobacilli exhibiting several in vitro mechanisms of action against respiratory viral infections, including induction of interferon regulatory pathways and direct inhibition of respiratory viruses. Rational selection of Lactobacillaceae strains was based on previously documented beneficial properties, up-scaling and industrial production characteristics, clinical safety parameters, and potential antiviral and immunostimulatory efficacy in the URT demonstrated in this study. Using a three-step selection strategy, three strains were selected and further tested in vitro antiviral assays and in formulations: Lacticaseibacillus casei AMBR2 as a promising endogenous candidate URT probiotic with previously reported barrier-enhancing and anti-pathogenic properties and the two well-studied model strains Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1 that display immunomodulatory capacities. The three strains and their combination significantly reduced the cytopathogenic effects of RSV, influenza A/H1N1 and B viruses, and HCoV-229E coronavirus in co-culture models with bacteria, virus, and host cells. Subsequently, these strains were formulated in a throat spray and human monocytes were employed to confirm the formulation process did not reduce the interferon regulatory pathway-inducing capacity. Administration of the throat spray in healthy volunteers revealed that the lactobacilli were capable of temporary colonization of the throat in a metabolically active form. Thus, the developed spray with live lactobacilli will be further explored in the clinic as a potential broad-acting live biotherapeutic strategy against respiratory viral diseases.  相似文献   
574.
A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-dechlorinating enrichment culture. Cells of the bacterium were motile curved rods, with approximately four lateral flagella. They possessed a gram-positive type of cell wall and contained cytochrome c. Optimum growth occurred at pH 7.2–7.8 and 34–38° C. The organism grew with l-lactate, pyruvate, butyrate, formate, succinate, or ethanol as electron donors, using either tetrachloroethene, 2-chlorophenol, 2,4,6-trichlorophenol, 3-chloro-4-hydroxy-phenylacetate, sulfite, thiosulfate, or fumarate as electron acceptors. Strain PCE1 also grew fermentatively with pyruvate as the sole substrate. l-Lactate and pyruvate were oxidized to acetate. Tetrachloroethene was reductively dechlorinated to trichloroethene and small amounts (< 5%) of cis-1,2-dichloroethene and trans-1,2-dichloroethene. Chlorinated phenolic compounds were dechlorinated specifically at the ortho-position. On the basis of 16S rRNA sequence analysis, the organism was identified as a species within the genus Desulfitobacterium, which until now only contained the chlorophenol-dechlorinating bacterium, Desulfitobacterium dehalogenans. Received: 31 August 1995 / Accepted: 14 November 1995  相似文献   
575.
ABSTRACT: BACKGROUND: Careful hand hygiene (HH) is the single most important factor in preventing the transmission of infections to patients, but compliance is difficult to achieve and maintain. A lack of understanding of the processes involved in changing staff behaviour may contribute to the failure to achieve success. The purpose of this study was to identify nurses' and administrators' perceived barriers and facilitators to current HH practices and the implementation of a new electronic monitoring technology for HH. METHODS: Ten key informant interviews (three administrators and seven nurses) were conducted to explore barriers and facilitators related to HH and the impact of the new technology on outcomes. The semi structured interviews were based on the Theoretical Domains Framework by Michie et al. and conducted prior to intervention implementation. Data were explored using an inductive qualitative analysis approach. Data between administrators and nurses were compared. RESULTS: In 9 of the 12 domains, nurses and administrators differed in their responses. Administrators believed that nurses have insufficient knowledge and skills to perform HH, whereas the nurses were confident they had the required knowledge and skills. Nurses focused on immediate consequences, whereas administrators highlighted long-term outcomes of the system. Nurses concentrated foremost on their personal safety and their families' safety as a source of motivation to perform HH, whereas administrators identified professional commitment, incentives, and goal setting. Administrators stated that the staff do not have the decision processes in place to judge whether HH is necessary or not. They also highlighted the positive aspects of teams as a social influence, whereas nurses were not interested in group conformity or being compared to others. Nurses described the importance of individual feedback and self-monitoring in order to increase their performance, whereas administrators reported different views. CONCLUSIONS: This study highlights the benefits of using a structured approach based on psychological theory to inform an implementation plan for a behavior change intervention. This work is an essential step towards systematically identifying factors affecting nurses' behaviour associated with HH.  相似文献   
576.
The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5β1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled‐coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.  相似文献   
577.
578.
Cancer therapy     
In recent years a growing recognition that molecularly-targeted therapies face formidable obstacles has revived interest in more generic tumor cell phenotypes that could be exploited for therapy. Two recent reports demonstrate that cancer cell survival is critically dependent on the activity of MTH1, a nucleotide pyrophosphatase that converts the oxidized nucleotides 8-oxo-dGTP and 2-OH-dATP to the corresponding monophosphates, thus preventing their incorporation into genomic DNA. Tumor cells frequently overexpress MTH1, probably because malignant transformation creates oxidative stress that renders the nucleotide pool highly vulnerable to oxidation. As a result, MTH1 inhibition in cancer cells results in accumulation and incorporation of 8-oxo-dGTP and 2-OH-dATP into DNA, leading to DNA damage and cell death. This toxic effect is highly cancer cell-specific, as MTH1 is generally dispensable for the survival of normal, untransformed cells. Importantly, MTH1 proves to be a “druggable” enzyme that can be inhibited both by an existing protein kinase inhibitor drug, crizotinib, and by novel compounds identified through screening. Inhibition of MTH1 leading to toxic accumulation of oxidized nucleotides specifically in tumor cells therefore represents an example of a “non-personalised” approach to cancer therapy.  相似文献   
579.
The microtubular stabilizing agent docetaxel (Taxotere™) is known to inhibit the intraerythrocytic development of Plasmodium falciparum. To investigate the mechanism(s) of inhibition, we analyzed the structural organization of the mitotic spindle by immunofluorescence and electron microscopy. When 30 μM docetaxel was applied for five hours on ring forms, alterations in the mitotic spindles leading to abnormal nuclear divisions were observed. At the trophozoite- and schizont-stage, docetaxel pulses prevent mitosis by stabilizing microtubular structures associated with the mitotic apparatus, giving abnormal spindles. However, this inhibition did not interfere with parasite DNA synthesis indicating the absence of a checkpoint that couples exit from mitosis with proper spindle assembly as observed in higher eukaryotic cells. In parallel, intraerythrocytic concentration of docetaxel was measured in parasitized erythrocytes, after incubation of cells with 3H-docetaxel for five hours. It was found to be 14-fold increased at the ring-stage of infected erythrocytes compared to normal ones, 170-fold increased at the trophozoite-stage and 1,500-fold increased at the schizont-stage. Our data show that, even though the overall intracellular concentration of docetaxel is low in docetaxel-pulsed rings, the agent might be sufficient to disturb the spindle organization. However, the existence of targets for docetaxel other than mitotic spindle microtubules. i.e. erythrocyte membrane components, could interfere with mitotic spindle formation  相似文献   
580.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号