首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   52篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   31篇
  2014年   23篇
  2013年   44篇
  2012年   47篇
  2011年   43篇
  2010年   27篇
  2009年   30篇
  2008年   23篇
  2007年   35篇
  2006年   37篇
  2005年   29篇
  2004年   24篇
  2003年   36篇
  2002年   35篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   15篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
531.
The serine/threonine kinase Akt is an upstream positive regulator of the mammalian target of rapamycin (mTOR). However, the mechanism by which Akt activates mTOR is not fully understood. The known pathway by which Akt activates mTOR is via direct phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2), which is a negative regulator of mTOR. Here we establish an additional pathway by which Akt inhibits TSC2 and activates mTOR. We provide for the first time genetic evidence that Akt regulates intracellular ATP level and demonstrate that Akt is a negative regulator of the AMP-activated protein kinase (AMPK), which is an activator of TSC2. We show that in Akt1/Akt2 DKO cells AMP/ATP ratio is markedly elevated with concomitant increase in AMPK activity, whereas in cells expressing activated Akt there is a dramatic decrease in AMP/ATP ratio and a decline in AMPK activity. Currently, the Akt-mediated phosphorylation of TSC2 and the inhibition of AMPK-mediated phosphorylation of TSC2 are viewed as two separate pathways, which activate mTOR. Our results demonstrate that Akt lies upstream of these two pathways and induces full inhibition of TSC2 and activation of mTOR both through direct phosphorylation and by inhibition of AMPK-mediated phosphorylation of TSC2. We propose that the activation of mTOR by Akt-mediated cellular energy and inhibition of AMPK is the predominant pathway by which Akt activates mTOR in vivo.  相似文献   
532.
533.
534.
535.
Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.  相似文献   
536.
537.
The molecular basis for the specificity of aldehyde dehydrogenases (ALDHs) for retinal, the precursor of the morphogen retinoic acid, is still poorly understood. We have expressed in Escherichia coli both retinal dehydrogenase (RALDH), a cytosolic aldehyde dehydrogenase originally isolated from rat kidney, and the highly homologous phenobarbital-induced aldehyde dehydrogenase (PB-ALDH). Oxidation of propanal was observed with both enzymes. On the other hand, recombinant RALDH efficiently catalyzed oxidation of 9-cis- and all-trans-retinal, whereas PB-ALDH was inactive with all-trans-retinal and poorly active with 9-cis-retinal. A striking difference between PB-ALDH and all other class I ALDHs is the identity of the amino acid immediately preceding the active nucleophile Cys(302) (Ile(301) instead of Cys(301)). Nevertheless, these amino acids could be exchanged in either RALDH or PB-ALDH without affecting substrate specificity. Characterization of chimeric enzymes demonstrates that distinct groups of amino acids control the differential activity of RALDH and PB-ALDH with all-trans- and 9-cis-retinal. Of 52 divergent amino acids, the first 17 are crucial for activity with all-trans-retinal, whereas the next 25 are important for catalysis of 9-cis-retinal oxidation. Recombinant enzymes with specificity for all-trans- or 9-cis-retinal were obtained, which should provide useful tools to study the relative importance of local production of all-trans- versus 9-cis-retinoic acid in development and tissue differentiation.  相似文献   
538.
ATP-binding cassette A1 (ABCA1) is a key mediator of cholesterol and phospholipid efflux to apolipoprotein particles. We show that ABCA1 is a constitutively phosphorylated protein in both RAW macrophages and in a human embryonic kidney cell line expressing ABCA1. Furthermore, we demonstrate that phosphorylation of ABCA1 is mediated by protein kinase A (PKA) or a PKA-like kinase in vivo. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assays, we show that Ser-1042 and Ser-2054, located in the nucleotide binding domains of ABCA1, are major phosphorylation sites for PKA. ApoA-I-dependent phospholipid efflux was decreased significantly by mutation of Ser-2054 alone and Ser-1042/Ser-2054 but was not significantly impaired with Ser-1042 alone. The mechanism by which ABCA1 phosphorylation affected ApoA-I-dependent phospholipid efflux did not involve either alterations in ApoA-I binding or changes in ABCA1 protein stability. These studies demonstrate a novel serine (Ser-2054) on the ABCA1 protein crucial for PKA phosphorylation and for regulation of ABCA1 transporter activity.  相似文献   
539.
The functions necessary for bacterial growth strongly depend on the features of the bacteria and the components of the growth media. Our objective was to identify the functions essential to the optimum growth of Streptococcus thermophilus in milk. Using random insertional mutagenesis on a S. thermophilus strain chosen for its ability to grow rapidly in milk, we obtained several mutants incapable of rapid growth in milk. We isolated and characterized one of these mutants in which an amiA1 gene encoding an oligopeptide-binding protein (OBP) was interrupted. This gene was a part of an operon containing all the components of an ATP binding cassette transporter. Three highly homologous amiA genes encoding OBPs work with the same components of the ATP transport system. Their simultaneous inactivation led to a drastic diminution in the growth rate in milk and the absence of growth in chemically defined medium containing peptides as the nitrogen source. We constructed single and multiple negative mutants for AmiAs and cell wall proteinase (PrtS), the only proteinase capable of hydrolyzing casein oligopeptides outside the cell. Growth experiments in chemically defined medium containing peptides indicated that AmiA1, AmiA2, and AmiA3 exhibited overlapping substrate specificities, and that the whole system allows the transport of peptides containing from 3 to 23 residues.  相似文献   
540.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号