首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1781篇
  免费   152篇
  国内免费   1篇
  2023年   9篇
  2022年   30篇
  2021年   62篇
  2020年   28篇
  2019年   33篇
  2018年   64篇
  2017年   34篇
  2016年   54篇
  2015年   110篇
  2014年   126篇
  2013年   138篇
  2012年   164篇
  2011年   139篇
  2010年   92篇
  2009年   67篇
  2008年   101篇
  2007年   79篇
  2006年   89篇
  2005年   85篇
  2004年   84篇
  2003年   82篇
  2002年   87篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1986年   6篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1975年   6篇
  1974年   4篇
  1972年   4篇
  1971年   3篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
  1966年   6篇
  1965年   3篇
  1964年   3篇
排序方式: 共有1934条查询结果,搜索用时 931 毫秒
71.
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community—either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.Subject terms: Microbial ecology, Food webs  相似文献   
72.
73.
Mutations in thehuman skeletal muscle Na+ channelunderlie the autosomal dominant disease hyperkalemic periodic paralysis (HPP). Muscle fibers from affected individuals exhibit sustained Na+ currents thought to depolarizethe sarcolemma and thus inactivate normalNa+ channels. We expressed humanwild-type or M1592V mutant-subunits with the 1-subunitin Xenopus laevis oocytes and recordedNa+ currents using two-electrodeand cut-open oocyte voltage-clamp techniques. The most prominentfunctional difference betweenM1592V mutant and wild-typechannels is a 5- to 10-mV shift in the hyperpolarized direction of thesteady-state activation curve. The shift in the activation curve forthe mutant results in a larger overlap with the inactivation curve thanthat observed for wild-type channels. Accordingly, the current throughM1592V channels displays a larger noninactivating component than does that through wild-type channels atmembrane potentials near 40 mV. The functional properties of theM1592V mutant resemble those ofthe previously characterized HPPT704M mutant. Both clinicallysimilar phenotypes arise from mutations located at a distance from theputative voltage sensor of the channel.

  相似文献   
74.
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.  相似文献   
75.
Electrokinetic chromatography was employed to separate the enantiomers of two novel functionalized ruthenium(II) complexes with different polypyridyl coordination spheres. The use of anionic carboxymethyl-beta-cyclodextrin as chiral mobile phase additive resulted in maximum efficiency and resolution for the enantiomer separation of both transition metal complexes. The syntheses of the [4-(3-hydroxypropyl)-4'-methyl-2,2'-bipyridine]-bis(2,2'-bipyridine)rethenium(II)-bis(tetrafluoroborate) and [4-(3-hydroxypropyl)-4'-methyl-2,2'-bipyridine]-bis(4,4'-dimethyl-2,2'-bypyridine)ruthenium(II)-bis(tetrafluoroborate) complexes and their complete characterization by means of two-dimensional (1)H and (13)C[(1)H] NMR techniques ((1)H-(1)H COSY and (1)H-(13)C HMQC) as well as elemental analyses and MALDI-TOFMS are described in detail. The functionalized complexes can be used as building blocks for further reactions with polymers, biopolymers, surfaces and nanoparticles.  相似文献   
76.
Olfactory receptor neurons and the interneurons of the olfactory lobe are organized in distinct units called glomeruli. We have used expression patterns and genetic analysis to demonstrate that a combinatorial code of Roundabout (Robo) receptors act to position sensory terminals within the olfactory lobe. Groups of sensory neurons possess distinct blends of Robo and Robo3 and disruption of levels by loss-of-function or ectopic expression results in aberrant targeting. In the wild type, most of the neurons send collateral branches to the contralateral lobe. Our data suggests that guidance of axons across brain hemispheres is mediated by Slit-dependent Robo2 signaling. The location of sensory arbors at distinct positions within the lobe allows short-range interactions with projection neurons leading to formation of the glomeruli.  相似文献   
77.
Previous research has demonstrated that, after being trained on multiple match-to-sample (MTS) tasks (A-B, B-C), most human adults respond in accordance with symmetry (B-A, C-B) and equivalence (C-A) when measured with MTS tests and with a precursor to the Relational Evaluation Procedure (pREP). The latter procedure involves conditional go/no-go discrimination tasks, requiring subjects to press a bar during a 5s interval after the successive presentation of two same-class stimuli, and not to press after the presentation of two different-class stimuli (e.g. Ci -->Ai -->press, Ci -->Aj -->no press). The present study was an effort to replicate these findings. The study consisted of five experiments. Very few subjects evidenced pREP symmetry and equivalence unless they had (a) already demonstrated symmetry and equivalence in a MTS test before, or (b) received pREP pretraining with unrelated stimulus pairs and symmetry was tested before equivalence. Failures to show symmetry were always associated with pressing at or close to 50% of these trials. Failures to show equivalence were associated with pressing or not pressing on (almost) all trials. Current findings are similar to those obtained in equivalence studies involving MTS probes permitting the subjects not to respond to the designated comparisons.  相似文献   
78.
79.
In this paper, we report the NMR structural study of two quadruplex structures formed by truncations of the human telomeric sequence and containing a modified base, namely d(AprGGGT) and d(TAprGGGT), where Apr indicates 2'-deoxy-8-(propyn-1-yl)adenosines. Both oligonucleotides have been found to form 4-fold symmetric G-quadruplex structures with all strands parallel and equivalent to each other and characterized by higher thermal stabilities than the natural counterparts. The presence of the propynyl groups affects the conformations of the 5' edge of both quadruplexes in such a way to prevent the formation of one of the two possible H-bond patterns observed for a canonical A-tetrad. The increased thermal stabilities of the modified quadruplexes seem to be mostly due to a prevalent syn glycosidic conformation assumed by the Apr residues.  相似文献   
80.
Previous work has demonstrated dysregulation of key cell cycle components in human cytomegalovirus (HCMV)-infected human fibroblasts, resulting in cell cycle arrest (F. M. Jault, J.-M. Jault, F. Ruchti, E. A. Fortunato, C. L. Clark, J. Corbeil, D. D. Richman, and D. H. Spector, J. Virol. 69:6697-6704, 1995). The activation of the mitotic kinase Cdk1/cyclin B, which was detected as early as 8 h postinfection (p.i.) and maintained throughout the time course, was particularly interesting. To understand the mechanisms underlying the induction of this kinase activity, we have examined the pathways that regulate the activation of Cdk1/cyclin B1 complexes. The accumulation of the cyclin B1 subunit in HCMV-infected cells is the result of increased synthesis and reduced degradation of the protein. In addition, the catalytic subunit, Cdk1, accumulates in its active form in virus-infected cells. The decreased level of the Tyr15-phosphorylated form of Cdk1 in virus-infected fibroblasts is due in part to the down-regulation of the expression and activity of the Cdk1 inhibitory kinases Myt1 and Wee1. Increased degradation of Wee1 via the proteasome also accounts for its absence at 24 h p.i. At late times, we observed accumulation of the Cdc25 phosphatases that remove the inhibitory phosphates from Cdk1. Interestingly, biochemical fractionation studies revealed that the active form of Cdk1, a fraction of total cyclin B1, and the Cdc25 phosphatases reside predominantly in the cytoplasm of infected cells. Collectively, these data suggest that the maintenance of Cdk1/cyclin B1 activity observed in HCMV-infected cells can be explained by three mechanisms: the accumulation of cyclin B1, the inactivation of negative regulatory pathways for Cdk1, and the accumulation of positive factors that promote Cdk1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号