首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1792篇
  免费   156篇
  国内免费   1篇
  1949篇
  2023年   10篇
  2022年   32篇
  2021年   65篇
  2020年   30篇
  2019年   34篇
  2018年   69篇
  2017年   38篇
  2016年   56篇
  2015年   112篇
  2014年   131篇
  2013年   138篇
  2012年   172篇
  2011年   140篇
  2010年   92篇
  2009年   70篇
  2008年   103篇
  2007年   83篇
  2006年   91篇
  2005年   88篇
  2004年   85篇
  2003年   81篇
  2002年   85篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   10篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
排序方式: 共有1949条查询结果,搜索用时 15 毫秒
71.
P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown. Here we report the following three findings. (i) The apoptosome can be properly activated in vitro in the absence of p66Shc only if purified cytochrome c is supplied. (ii) Cytochrome c release after oxidative signals is impaired in the absence of p66Shc. (iii) p66Shc induces the collapse of the mitochondrial trans-membrane potential after oxidative stress. Furthermore, we showed that a fraction of cytosolic p66Shc localizes within mitochondria where it forms a complex with mitochondrial Hsp70. Treatment of cells with ultraviolet radiation induced the dissociation of this complex and the release of monomeric p66Shc. We propose that p66Shc regulates the mitochondrial pathway of apoptosis by inducing mitochondrial damage after dissociation from an inhibitory protein complex. Genetic and biochemical evidence suggests that mitochondria regulate life span through their effects on the energetic metabolism (mitochondrial theory of aging). Our data suggest that mitochondrial regulation of apoptosis might also contribute to life span determination.  相似文献   
72.
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.  相似文献   
73.
Schistosomiasis is a chronic parasitic disease caused by the trematode species Schistosoma mansoni. Chemotherapy is the only immediate recourse to minimize the prevalence and incidence of this disease worldwide. At present, praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis. However, dependence on a single drug is concern because some strains can become resistant. In this context, medicinal plants become potential candidates as sources of new drug prototypes. This study provides findings on the schistosomicidal activity of the essential oil of Baccharis trimera in in vitro assays. During the assays parameters such as motility of adult worms, oviposition, morphological changes on the tegument and especially the mortality rate of adult worms of the BH strain were evaluated. The assays, which were carried out with four concentrations - 24, 48, 91 and 130μg/mL - of the essential oil, have shown a promising activity regarding the parameters under study. It was possible to notice a significant decline in the motility of the worms and a mortality rate of 100% 30h after they had been exposed to the essential oil in the concentration of 130μg/mL. Male worms were more susceptible, producing a dose-response effect within a smaller exposition period than female worms. In what refers to morphological changes, the essential oil of B. trimera induced a peeling on the tegument surface, as well as the destruction of tubercles and spines, which resulted in smooth areas on the body surface. The essential oil also caused tegument destruction in female worms, in addition to destruction of the oral and acetabular suckers. It is the first time that the schistosomicidal activity has been reported for essential oil of B. trimera (less) DC.  相似文献   
74.
It has become clear that the binding of small and large ligands to proteins can invoke significant changes in side chain and main chain motion in the fast picosecond to nanosecond timescale. Recently, the use of a "dynamical proxy" has indicated that changes in these motions often reflect significant changes in conformational entropy. These entropic contributions are sometimes of the same order as the total entropy of binding. Thus, it is important to understand the connections amongst motion between the manifold of states accessible to the native state of proteins, the corresponding entropy, and how this impacts the overall energetics of protein function. The interaction of proteins with carbohydrate ligands is central to a range of biological functions. Here, we examine a classic carbohydrate interaction with an enzyme: the binding of wild-type hen egg white lysozyme (HEWL) to the natural, competitive inhibitor chitotriose. Using NMR relaxation experiments, backbone amide and side chain methyl axial order parameters were obtained across apo and chitotriose-bound HEWL. Upon binding, changes in the apparent amplitude of picosecond to nanosecond main chain and side chain motions are seen across the protein. Indeed, binding of chitotriose renders a large contiguous fraction of HEWL effectively completely rigid. Changes in methyl flexibility are most pronounced closest to the binding site, but average to only a small overall change in the dynamics across the protein. The corresponding change in conformational entropy is unfavorable and estimated to be a significant fraction of the total binding entropy.  相似文献   
75.
The pathogenic strain Nocardia cyriacigeorgica GUH-2 was isolated from a fatal human nocardiosis case, and its genome was sequenced. The complete genomic sequence of this strain contains 6,194,645 bp, an average G+C content of 68.37%, and no plasmids. We also identified several protein-coding genes to which N. cyriacigeorgica's virulence can potentially be attributed.  相似文献   
76.

Purpose

Life cycle assessments (LCAs) of various anchovy (anchoveta) direct human consumption products processed in Peru were carried out, to evaluate their relative environmental performance as alternative products to enhance nutrition of communities with low access to fish products in the country.

Methods

LCA was carried out for fresh, frozen, canned, salted and cured anchoveta products, both at plant gate and featuring local and national distribution over non-refrigerated, chilled and fully refrigerated distribution chain. The functional unit used was 1 kg of fish in the final product.

Results and discussion

Results demonstrate that, in environmental terms, more-refined products (cured and canned anchoveta products) represent a much higher burden than less- refined products (fresh, frozen and salted). Although this is a likely result, the magnitude of this difference (4 to 27 times when expressed as an environmental single score) is higher than expected and had not been quantified before for salted and cured products, as far as we know. This difference is mainly due to differences in energy consumption between types of products. Furthermore, cured and salted products feature larger biotic resource use, when calculated based on the whole fish equivalent, due to higher processing losses/discards. The relevance of taking into account the different transportation and storage needs is highlighted. For those products requiring refrigerated transportation and storage, over a national distribution chain, those activities increase the overall environmental impacts of the products by 55 % (fresh chilled) to 67 % (frozen). However, such an increase does not worsen the environmental performance of fresh and frozen products in comparison to the energy-intensive canned and cured products.

Conclusions

It is concluded that a more sustainability-oriented analysis, including the social and economic pillars of sustainability, is required towards decision-making involving promotion of either product for addressing nutritional deficiencies in Peru.  相似文献   
77.
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.  相似文献   
78.

Background

Down-modulation of the CD4 receptor is one of the hallmarks of HIV-1 infection and it is believed to confer a selective replicative advantage to the virus in vivo. This process is mainly mediated by three viral proteins: Env, Vpu and Nef. To date, the mechanisms that lead to CD4 depletion from the surface of infected cells during HIV-1 infection are still only partially characterized. In this study, we sought to identify and characterize cellular host factors in HIV-1-induced CD4 down-modulation.

Results

To identify host factors involved in CD4 down-regulation, we used a whole genome-targeting shRNA lentiviral library in HeLa CD4+ cells expressing Nef as an inducer of CD4 down-modulation. We identified 55 genes, mainly encoding for proteins involved in various steps of clathrin-mediated endocytosis. For confirmation and further selection of the hits we performed several rounds of validation, using individual shRNA lentiviral vectors with a different target sequence for gene knock-down in HIV-1-infected T cells. By this stringent validation set-up, we could demonstrate that the knock-down of DNM3 (dynamin 3), SNX22 (sorting nexin 22), ATP6AP1 (ATPase, H+ Transporting, Lysosomal Accessory Protein 1), HRBL (HIV-Rev binding protein Like), IDH3G (Isocitrate dehydrogenase), HSP90B1 (Heat shock protein 90 kDa beta member 1) and EPS15 (Epidermal Growth Factor Receptor Pathway Substrate 15) significantly increases CD4 levels in HIV-infected SupT1 T cells compared to the non-targeting shRNA control. Moreover, EPS15, DNM3, IDH3G and ATP6AP1 knock-down significantly decreases HIV-1 replication in T cells.

Conclusions

We identified seven genes as cellular co-factors for HIV-1-mediated CD4 down-regulation in T cells. The knock-down of four out of seven of these genes also significantly reduces HIV-1 replication in T cells. Next to a role in HIV-mediated CD4 down-regulation, these genes might however affect HIV-1 replication in another way. Our findings give insights in the HIV-1-mediated CD4 down-regulation at the level of the plasma membrane and early endosomes and identify four possible new HIV-1 replication co-factors.
  相似文献   
79.
This survey uses a multivariate classification analysis to discriminate yeast strains with interesting biochemical activities for the processing of table olives among a collection of 32 isolates belonging to 16 different yeast species. Lipase, esterase and β-glucosidase activities (desirable characteristics) were quantitatively evaluated in both extracellular and cellular fractions for all isolates in different types of culture media. The study of the quantitative data by cluster and principal component analyses led to the identification of several Wickerhamomyces anomalus, Candida boidinii and Candida diddensiae isolates with promising characteristics (the best global activity levels), clearly differentiated from the rest of the yeasts. The results obtained in this work open up new alternatives to this methodology for the study, classification and selection of the most suitable yeasts to be used as starters, alone or in combination with lactic acid bacteria, during table olive processing.  相似文献   
80.
Caspases, effectors of apoptosis, are key mediators of neuronal death in several neurodegenerative diseases. Caspase-8 and caspase-6 have been implicated in the pathogenesis of amyotrophic lateral sclerosis, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease (AD). ß-Amyloid precursor protein (APP) is cleaved at Asp664 in its intracellular domain by caspase-8. We and other laboratories recently showed that obliteration of the caspase cleavage site on APP alleviates functional AD-like deficits in a mouse model. Therefore, caspase cleavage of APP constitutes a potential novel target for therapeutic intervention. To identify chemical inhibitors of caspase-8 cleavage, we screened a subset of the chemical library at the Harvard NeuroDiscovery Center’s Laboratory for Drug Discovery in Neurodegeneration. We show that caspase-8, but not caspase-1, -3, or -9, cleaves a biotinylated peptide derived from APP at Asp664, and we report the development of a sensitive high-throughput assay for caspase-8 cleavage of APP and the use of that assay for the identification of specific small molecule “hit” compounds that potently inhibit Asp664 cleavage of APP. Furthermore, we demonstrate that one of these compounds (LDN-0021835) inhibits the cleavage of APP at Asp664 in cell-based assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号