首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2173篇
  免费   197篇
  国内免费   1篇
  2023年   11篇
  2022年   31篇
  2021年   66篇
  2020年   32篇
  2019年   44篇
  2018年   69篇
  2017年   43篇
  2016年   68篇
  2015年   126篇
  2014年   138篇
  2013年   162篇
  2012年   184篇
  2011年   155篇
  2010年   113篇
  2009年   79篇
  2008年   134篇
  2007年   105篇
  2006年   113篇
  2005年   116篇
  2004年   104篇
  2003年   98篇
  2002年   97篇
  2001年   19篇
  2000年   18篇
  1999年   30篇
  1998年   16篇
  1997年   7篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   14篇
  1992年   10篇
  1991年   12篇
  1990年   8篇
  1989年   9篇
  1988年   6篇
  1987年   11篇
  1986年   8篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1975年   9篇
  1974年   3篇
  1973年   5篇
  1972年   5篇
  1971年   4篇
排序方式: 共有2371条查询结果,搜索用时 406 毫秒
711.
Chlorosomes are unique light-harvesting structures found in two families of photosynthetic bacteria. In this study, three chlorosome proteins (CsmF, CsmH, and CsmX) of the green sulfur bacterium Chlorobium tepidum were characterized by cloning and sequencing the genes which encode them, by overproducing the respective proteins in Escherichia coli, and by raising polyclonal antisera to the purified proteins. Three other proteins (AtpF, CT1970, and CT2144) which were identified in chlorosome fractions have similarly been characterized. The antisera were used to establish the distribution of each protein in various cellular fractions. Ten chlorosome proteins (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) copurified in a constant proportion together with bacteriochlorophyll c, and none of these 10 proteins was found in substantial amounts in other subcellular fractions. An antiserum to CsmH was highly effective in agglutinating chlorosomes, and antisera to CsmI, CsmJ, CsmX, and CsmA also immunoprecipitated chlorosomes to varying extents. However, an antiserum to CsmF did not agglutinate chlorosomes. The sequences of chlorosome proteins generally are not significantly similar to the sequences of other proteins in the databases. However, the N-terminal domains of three chlorosome proteins, CsmI, CsmJ, and CsmX, are related to adrenodoxin-type ferredoxins that ligate [2Fe-2S] clusters [Vassilieva, E. V., Antonkine, M. L., Zybailov, B. L., Yang, F., Jakobs, C. U., Golbeck, J. H., and Bryant, D. A. (2001) Biochemistry 40, 464-473]. The sequences of the C-terminal domains of these three proteins appear to be distantly related to CsmA and CsmE. The remaining chlorosome proteins can be divided into two additional structural families, CsmB/F and CsmC/D. CsmH is recovered in water-soluble form after overproduction in E. coli. Interestingly, this protein contains an N-terminal domain that is similar to CsmB/D, while its C-terminal domain is related to CsmC/D. The sequence relationships indicate that, although the protein composition of Chlorobium-type chlorosomes is superficially more complex than that of the chlorosomes of Chloroflexus aurantiacus, this heterogeneity is mostly produced by gene duplication and divergence among a small number of protein types.  相似文献   
712.
The term catabolon was introduced to define a complex functional unit integrated by different catabolic pathways, which are, or could be, co-ordinately regulated, and that catalyses the transformation of structurally related compounds into a common catabolite. The phenylacetyl-CoA catabolon encompasses all the routes involved in the transformation of styrene, 2-phenylethylamine, trans-styrylacetic acid, phenylacetaldehyde, phenylacetic acid, phenylacetyl amides, phenylacetyl esters and n-phenylalkanoic acids containing an even number of carbon atoms, into phenylacetyl-CoA. This common intermediate is subsequently catabolized through a route of convergence, the phenylacetyl-CoA catabolon core, into general metabolites. The genetic organization of this central route, the biochemical significance of the whole functional unit and its broad biotechnological applications are discussed.  相似文献   
713.
A useful strategy directed to the isolation of a required gene with a high GC content is reported. Using a degenerate oligonucleotide probe, deduced from the amino terminus of a protein, it is possible to obtain a fragment of DNA containing its encoding gene by PCR amplification. Furthermore, the cloning of a desired gene can be accomplished in two steps by using an oligonucleotide deduced (i) from an internal sequence, (ii) from a consensus sequence, or (iii) from a DNA sequence adjacent to a disrupting element (transposon, insertion sequence, cassette). This method, which could be applied to a bacteriophage, plasmid, or cosmid genomic library, has been successfully used for cloning several genes from different biological systems.  相似文献   
714.
The life cycle of Vibrio parahaemolyticus has been conventionally associated with estuarine areas characterized by moderate salinity and warm seawater temperatures. Recent evidence suggests that the distribution and population dynamics of V. parahaemolyticus may be shaped by the existence of an oceanic transport of communities of this organism mediated by zooplankton. To evaluate this possibility, the presence of V. parahaemolyticus in the water column of offshore areas of Galicia was investigated by PCR monthly over an 18-month period. Analysis of zooplankton and seawater showed that the occurrence of V. parahaemolyticus in offshore areas was almost exclusively associated with zooplankton and was present in 80% of the samples. The influence of environmental factors assessed by generalized additive models revealed that the abundance and seasonality of V. parahaemolyticus in zooplankton was favoured by the concurrence of downwelling periods that promoted the zooplankton patchiness. These results confirm that offshore waters may be common habitats for V. parahaemolyticus, including strains with virulent traits. Additionally, genetically related populations were found in offshore zooplankton and in estuaries dispersed along 1500 km. This finding suggests that zooplankton may operate as a vehicle for oceanic dispersal of V. parahaemolyticus populations, connecting distant regions and habitats, and thereby producing impacts on the local community demography and the spread of Vibrio-related diseases.  相似文献   
715.
716.
717.
718.
Aim British estuarine ecosystems support large populations of protected migratory waders. Understanding how wader communities vary spatially and how they may be changing temporally can greatly improve the understanding of these dynamic ecosystems. Here, we explore the variation in functional diversity (using a range of morphological and ecological traits) in order to identify the processes shaping wader communities on British estuaries and how these processes may be changing. Location England, Wales and Scotland. Methods We use national survey data (Wetland Bird Survey) from 1980/1981 to 2006/2007 winter to calculate functional diversity (FD) – an index that measures trait dispersion – in wader communities on 100 estuaries. We test for evidence of non‐random patterns of diversity and explore the relative importance of two key processes, environmental filtering and competition, in shaping these communities. Results The observed FD was significantly and positively associated with species richness and to a lesser extent estuary area, followed by longitude. An increase in observed FD was observed since 1980, supported by a small but significant slope. In the majority of cases, changes in FD were mirrored by changes in species richness. Observed FD was on average lower than expected by chance, as indicated by a negative value of observed minus expected FD. However, this difference became less negative over time, with observed minus expected FD values increasing slightly, but significantly, over the study period. Main conclusions Wader FD varies across British estuaries, and the relative influence of the processes by which communities are structured appears to be changing through time. We discuss the potential drivers underlying these patterns and the importance of identifying such drivers for the protection of wader communities.  相似文献   
719.
720.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号