首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   151篇
  国内免费   1篇
  1895篇
  2023年   10篇
  2022年   32篇
  2021年   62篇
  2020年   28篇
  2019年   33篇
  2018年   64篇
  2017年   34篇
  2016年   54篇
  2015年   109篇
  2014年   126篇
  2013年   137篇
  2012年   163篇
  2011年   138篇
  2010年   91篇
  2009年   67篇
  2008年   101篇
  2007年   78篇
  2006年   89篇
  2005年   85篇
  2004年   84篇
  2003年   81篇
  2002年   85篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1975年   4篇
  1973年   1篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
排序方式: 共有1895条查询结果,搜索用时 15 毫秒
51.
52.
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community—either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.Subject terms: Microbial ecology, Food webs  相似文献   
53.
The p21-activated protein kinases (Paks) are serine/threonine protein kinases activated by binding to Rho family small GTPases, Rac and Cdc42. Recently, Pak family members have been subdivided into two groups, I and II. Group II Paks, including Pak4, Pak5, and Pak6, does not contain the highly conserved autoinhibitory domain that is found in the group I Paks members, i.e. Pak1, Pak2, and Pak3. In the present study, we have purified the glutathione S-transferase fusion form of Pak5 and shown for the first time that Pak5 autophosphorylation can be activated by GTP bound form of Cdc42. Mutation of histidine residues 19 and 22 to leucine on the p21-binding domain of Pak5 completely abolished the binding of Cdc42 and the Cdc42-mediated autophosphorylation. On the other hand, mutation of tyrosine 40 to cysteine of Cdc42 did not knockout the binding of Pak5. Analysis of C-terminal deletion mutants has identified an autoinhibitory fragment of Pak5 that is absent from other group II Pak family members. Taken together, these results suggest that Pak5, like Pak1, contains an autoinhibitory domain and its activity is regulated by Cdc42.  相似文献   
54.
Cloning and over-expression of human glucose 6-phosphate dehydrogenase (Glc6P dehydrogenase) has for the first time allowed a detailed kinetic study of a preparation that is genetically homogeneous and in which all the protein molecules are of identical age. The steady-state kinetics of the recombinant enzyme, studied by fluorimetric initial-rate measurements, gave converging linear Lineweaver-Burk plots as expected for a ternary-complex mechanism. Patterns of product and dead-end inhibition indicated that the enzyme can bind NADP+ and Glc6P separately to form binary complexes, suggesting a random-order mechanism. The Kd value for the binding of NADP+ measured by titration of protein fluorescence is 8.0 microm, close to the value of 6.8 microm calculated from the kinetic data on the assumption of a rapid-equilibrium random-order mechanism. Strong evidence for this mechanism and against either of the compulsory-order possibilities is provided by repeating the kinetic analysis with each of the natural substrates replaced in turn by structural analogues. A full kinetic analysis was carried out with deaminoNADP+ and with deoxyglucose 6-phosphate as the alternative substrates. In each case the calculated dissociation constant upon switching a substrate in a random-order mechanism (e.g. that for NADP+ upon changing the sugar phosphate) was indeed constant within experimental error as expected. The calculated rate constants for binding of the leading substrate in a compulsory-order mechanism, however, did not remain constant when the putative second substrate was changed. Previous workers, using enzyme from pooled blood, have variously proposed either compulsory-order or random-order mechanisms. Our study appears to provide unambiguous evidence for the latter pattern of substrate binding.  相似文献   
55.
A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+,K +-ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin–NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na +. Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K +, and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na +/K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.  相似文献   
56.
Hemoglobin Rainier is a naturally occurring hemoglobin variant in which the β145 tyrosine is substituted with cysteine. The α and βRainierglobin cDNAs were cloned in a high copy number vector and expressed inSaccharomyces cerevisiaeunder the control of galactose-regulated hybrid promoters. Using this system, we have expressed individual α and βRainierglobin chains. Coexpression of both α and βRainiercDNAs resulted in the production of a functional hemoglobin molecule. Purification of the recombinant protein was accomplished by ion exchange chromatography. The N-termini of the α and β chains were correctly processed, and the molecular mass, as determined by mass spectrometry, indicated amino acid composition identical to that of natural hemoglobin Rainier. The chromatographic properties of the recombinant hemoglobin Rainier were similar to human-derived hemoglobin A0. The purified recombinant hemoglobin molecule was shown to have an elevated oxygen affinity and a reduced cooperativity as previously reported for natural hemoglobin Rainier. Production of recombinant hemoglobin and especially hemoglobin variants like hemoglobin Rainier has the potential to facilitate use of hemoglobin as a blood substitute as well as in specific applications, such as for use as a therapeutic agent in the treatment of hypotension associated with septic shock.  相似文献   
57.
Hsp90 selectively modulates phenotype in vertebrate development   总被引:1,自引:0,他引:1       下载免费PDF全文
Compromised heat shock protein 90 (Hsp90) function reveals cryptic phenotypes in flies and plants. These observations were interpreted to suggest that this molecular stress-response chaperone has a capacity to buffer underlying genetic variation. Conversely, the protective role of Hsp90 could account for the variable penetrance or severity of some heritable developmental malformations in vertebrates. Using zebrafish as a model, we defined Hsp90 inhibitor levels that did not induce a heat shock response or perturb phenotype in wild-type strains. Under these conditions the severity of the recessive eye phenotype in sunrise, caused by a pax6b mutation, was increased, while in dreumes, caused by a sufu mutation, it was decreased. In another strain, a previously unobserved spectrum of severe structural eye malformations, reminiscent of anophthalmia, microphthalmia, and nanophthalmia complex in humans, was uncovered by this limited inhibition of Hsp90 function. Inbreeding of offspring from selected unaffected carrier parents led to significantly elevated malformation frequencies and revealed the oligogenic nature of this phenotype. Unlike in Drosophila, Hsp90 inhibition can decrease developmental stability in zebrafish, as indicated by increased asymmetric presentation of anophthalmia, microphthalmia, and nanophthalmia and sunrise phenotypes. Analysis of the sunrise pax6b mutation suggests a molecular mechanism for the buffering of mutations by Hsp90. The zebrafish studies imply that mild perturbation of Hsp90 function at critical developmental stages may underpin the variable penetrance and expressivity of many developmental anomalies where the interaction between genotype and environment plays a major role.  相似文献   
58.
59.
Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1–359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1–359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5–4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1–359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号