首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1744篇
  免费   151篇
  国内免费   1篇
  1896篇
  2023年   10篇
  2022年   32篇
  2021年   62篇
  2020年   28篇
  2019年   33篇
  2018年   64篇
  2017年   34篇
  2016年   54篇
  2015年   109篇
  2014年   125篇
  2013年   137篇
  2012年   163篇
  2011年   138篇
  2010年   91篇
  2009年   67篇
  2008年   101篇
  2007年   78篇
  2006年   89篇
  2005年   85篇
  2004年   84篇
  2003年   81篇
  2002年   86篇
  2001年   9篇
  2000年   5篇
  1999年   12篇
  1998年   11篇
  1997年   5篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
排序方式: 共有1896条查询结果,搜索用时 31 毫秒
1.
Ascidians, along with other urochordates, are the most evolutionarydistant group from vertebrates to display definitive chordate-specificcharacters, such as a notochord, dorsal hollow nerve cord, pharynxand endostyle. Most solitary ascidians have a biphasic lifehistory that has partitioned the development of these charactersbetween a planktonic microscopic tadpole larva (notochord anddorsal nerve cord) and a larger sessile adult (pharynx and endostyle).Very little is known of the molecular axial patterning processesoperating during ascidian postlarval development. Two axialpatterning homeobox genes Otx and Cdx are expressed in a spatiallyrestricted manner along the ascidian anteroposterior axis duringembryogenesis and postlarval development (i.e., metamorphosis).Comparisons of these patterns with those of homologous cephalochordateand vertebrate genes suggest that the novel ascidian biphasicbody plan was not accompanied by a deployment of these genesinto new pathways but by a heterochronic shift in tissue-specificexpression. Studies examining the role of all-trans retinoicacid (RA) in axial patterning in chordates also contribute toour understanding of the role of homeobox genes in the developmentof larval and adult ascidian body plans. Our studies demonstratethat RA does not regulate axial patterning in the developingascidian larval neuroaxis in a manner homologous to that foundin vertebrates. Although RA may regulate the expression of someascidian homeobox genes, ectopic application of RA does notappear to alter the morphology of the larval CNS. However, treatmentwith similar or lower concentrations of RA, have a profoundeffect on postlarval development and the juvenile body plan.These changes are correlated to a dramatic reduction of Otxexpression. Through these RA-induced effects we infer that whileRA may regulate the expression of some homeobox genes duringembryogenesis it has a far more dramatic impact on postlarvaldevelopment where regulative processes predominate.  相似文献   
2.
Summary Non-symbiotic heterotrophic N2 fixation in coniferous bark litter was investigated with the acetylene reduction assay under aerobic and anaerobic conditions. The litter studied was composed essentially of bark, of pH 5 and a C/N ratio of 101; the ratio of available C to available N, which governs N2 fixation, was considerably higher. The rate of N2 fixation was estimated as 2.5–4.4 g N. g–1 dry wt. day–1. Nitrogenase activity was still evident after seven months of incubation under aerobic conditions. The N2-ase activity was O2 dependent: under anaerobic conditions no N2-ase activity was found unless a fermentable C source was added. The importance of N2 fixation in N-poor litter for the maintenance of soil fertility is emphasized.  相似文献   
3.
This study examined the morphological development of single inhibitory arborizations in the gerbil central auditory brain stem. Using a brain slice preparation, neurons of the medial nucleus of the trapezoid body (MNTB) were filled with horseradish peroxidase (HRP), and their complete arborizations were analyzed along the tonotopic axis of the lateral superior olive (LSO). The projections in neonatal animals displayed well-defined arbors that were ordered appropriately within the LSO. It was evident from the axonal pathways that the MNTB afferents could correct for projection errors after reaching the postsynaptic population. As development progressed, a number of arbors established diffuse or inappropriate projections within the LSO. These immature arborizations were no longer apparent by 18–25 days postnatal. The anatomical specificity of arbors at 12–13 and 18–25 days was quantified by measuring the distance that terminal boutons spread across the frequency axis. There was a significant reduction of this distance in older animals. In addition, there was a significant reduction in the mean number of boutons per arbor between 12–13 days and 18–25 days. The maximum nucleus cross-sectional area continued to increase through 15–16 days, indicating that the refined arbors occupied an even smaller fraction of the postsynaptic structure. Taken together, these observations suggest that central inhibitory arbors form exuberant contacts that must be eliminated during development.  相似文献   
4.
The sensitivity of diploid human fibroblasts to the cytotoxic effects of diphtheria toxin (DT) depended on the cell growth status. Exponentially growing cells treated with 10?3-1 lethal flocculating units (LF) of DT/ml for 4 days survived with a frequency of 4 × 10?4. However, the DT-resistant phenotype of colonies isolated under these conditions was not stable. When the growth of the cells had been arrested by confluence or deprivation of serum growth factors prior to treatment with DT (4 days, 10?3-0.6 LF/ml), the survival decreased to 2 × 10?6 and the resistance of isolated colonies was stable. An in situ assay for induced DT-resistant mutants was developed in order to avoid problems associated with the possible reduced viability of the mutants relative to that of wild-type cells. A reproducible and linear dose response was obtained for the induction of DT-resistant mutants by ethylnitrosourea. The mutants were induced with high frequency by this compound (e.g., 10?3 mutants/viable cell at a 37% survival dose); complete expression of the mutant phenotype occurred after 6 generations of growth under nonselective conditions. Isolated mutant colonies showed stable resistance to DT and were cross-resistant to Pseudomonas aeruginosa exotoxin A.  相似文献   
5.
The cytotoxicity of the “K-region” epoxides as well as several other reactive metabolites or chemical derivatives of polycyclic hydrocarbons was compared in normally-repairing human diploid skin fibroblasts and in fibroblasts from a classical xeroderma pigmentosum (XP) patient (XP2BE) whose cells have been shown to carry out excision repair of damage induced in DNA by ultraviolet (UV) radiation at a rate approx. 20% that of normal cells. Each compound tested exhibited a 2- to 3-fold greater cytotoxicity in this XP strain than in the normal strain. To determine whether this difference in survival reflected a difference in the capacity of the strains to repair DNA damage caused by such hydrocarbon derivatives, we compared the cytotoxic effect of several “K-region” epoxides in two additional XP strains, each with a different capacity for repair of UV damage. The ration of the slopes of the survival curves for each of the XP strains to that of the normal strain, following exposure to each epoxide, was very similar to that which we had previously determined for their respective UV curves, suggesting that human cells repair damage induced in DNA by exposure to hydrocarbon derivatives with the same system used for UV-induced lesions.To determine whether the deficiency in rate of excision repair in this classical XP strain (XP2BE) causes such cells to be abnormally susceptible to mutations induced by “K-region” epoxides of polycyclic hydrocarbons, we compared them with normal cells for the frequency of induced mutations to 8-azaguanine resistance. The XP cells were two to three times more susceptible to mutations induced by the “K-region” epoxide of benzo(a)pyrene (BP), 7,12-dimethylbenz(a)anthracene (DMBA), and dibenz(a,h)anthracene (DBA). Evidence also was obtained that cells from an XP variant patient are abnormally susceptible to mutations induced by hydrocarbon epoxides and, as is the case following exposure to UV, are abnormally slow in converting low molecular weight DNA, synthesized from a template following exposure to hydrocarbon epoxides, into large-size DNA.  相似文献   
6.
Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.  相似文献   
7.
Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53–TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.  相似文献   
8.
Mutations in the parkin gene cause early-onset, autosomal recessive Parkinson's disease. Parkin functions as an E3 ubiquitin ligase to mediate the covalent attachment of ubiquitin monomers or linked chains to protein substrates. Substrate ubiquitination can target proteins for proteasomal degradation or can mediate a number of non-degradative functions. Parkin has been shown to preserve mitochondrial integrity in a number of experimental systems through the regulation of mitochondrial fission. Upon mitochondrial damage, parkin translocates to mitochondria to mediate their selective elimination by autophagic degradation. The mechanism underlying this process remains unclear. Here, we demonstrate that parkin interacts with and selectively mediates the atypical poly-ubiquitination of the mitochondrial fusion factor, mitofusin 1, leading to its enhanced turnover by proteasomal degradation. Our data supports a model whereby the translocation of parkin to damaged mitochondria induces the degradation of mitofusins leading to impaired mitochondrial fusion. This process may serve to selectively isolate damaged mitochondria for their removal by autophagy.  相似文献   
9.
10.
Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and can therefore provide information on kidney function. We here evaluated the presence of vesicles expressing the progenitor marker CD133 in the urine of normal subjects and of patients undergoing renal transplant. We found that EV expressing CD133 were present in the urine of normal subjects, but not of patients with end stage renal disease. The first day after transplant, urinary CD133+ EVs were present at low levels, to increase thereafter (at day 7). Urinary CD133+ EVs significantly increased in patients with slow graft function in respect to those with early graft function. In patients with a severe pre-transplant vascular damage of the graft, CD133+ EVs did not increase at day 7. At variance, the levels of EVs expressing the renal exosomal marker CD24 did not vary in the urine of patients with end stage renal disease or in transplanted patients in respect to controls. Sorted CD133+ EVs were found to express glomerular and proximal tubular markers. These data indicate that urinary CD133+ EVs are continuously released during the homeostatic turnover of the nephron and may provide information on its function or regenerative potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号