首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   13篇
  国内免费   1篇
  180篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   8篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   2篇
  2012年   7篇
  2011年   14篇
  2010年   4篇
  2009年   6篇
  2008年   13篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1986年   2篇
  1985年   6篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   5篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
131.
cAMP-dependent protein kinase from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The cAMP-dependent protein kinase (cAK) from Dictyostelium discoideum is an enzyme composed of one catalytic and one regulatory subunit. Upon binding of cAMP, the holoenzyme dissociates to liberate free active catalytic subunits. The cAK is developmentally regulated, ranging from very little activity in vegetative cells to maximal expression in postaggregative cells. Although there is no immunological cross-reaction between the subunits of cAKs from Dictyostelium and from other organisms, they share several biochemical properties. A complete cDNA for the regulatory subunit has been cloned and sequenced. Only one copy of the gene for the regulatory subunit is present per haploid genome. On the basis of the comparison of the structure of the cAK from Dictyostelium with its counterparts in yeast and higher eukaryotes, we propose a model for the evolution of cyclic-nucleotide-binding proteins.  相似文献   
132.
Strains of Escherichia coli carrying Tn10, a transposon consisting of two IS10 insertion sequences flanking a segment encoding for a tetracycline-resistance determinant, gain a competitive advantage in chemostat cultures. All Tn10-bearing strains that increase in frequency during competition have a new IS10 insertion that is found in the same location in the genome of those strains. We mapped, by a gradient of transmission, the position of the new IS10 insertion. We examined 11 isolates whose IS10 insertion was deleted by recombinational crossing- over, and in all cases the competitive fitness of the isolates was decreased. These results show that the IS10-generated insertion increases fitness in chemostat cultures. We named the insertion fit::IS10 and suggest that transposable elements may speed the rate of evolution by promoting nonhomologous recombination between preexisting variations within a genome and thereby generating adaptive variation.   相似文献   
133.
Members of the ZFY and ZNF6 gene families have been cloned from species representing different taxa and different modes of sex determination. Comparisons of these genes show the ZFY-like and ZNF6 sequences to be strongly conserved across marsupials, birds, and lepidosaurians. Sequence analyzed by neighbor-joining indicated that both gene families are monophyletic with a high bootstrap value. Pairing of sequences from males and females of nonmammalian species showed there to be no significant difference between male and female sequences from a single species, consistent with autosomal locations. The molecular distances between murine Zfy-1, Zfy-2, and other ZFY-like sequences suggested that Zfy genes have undergone a period of rapid evolutionary change not seen in human ZFY.   相似文献   
134.
A molecular and morphological study of several living aeluroid Carnivora was completed to evaluate the evolutionary relationships of the endemicCryptoprocta ferox, a carnivore living on the island of Madagascar. The molecular analysis, based on DNA/DNA hybridization experiments, suggests thatCryptoprocta is more closely related to the Herpestidae (as represented byMungos andIchneumia) than it is to the Viverrinae (Genetta), Paradoxurinae (Paguma, Paradoxurus), Felidae (Felis, Panthera), or Hyaenidae (Crocuta). Based on bootstrapping procedures applied to the individual DNA/DNA results, three branching patterns were observed which differ only by the relative position of the Felidae within the Aeluroidea. The amounts of genetic divergence measured between pairs of compared taxa have been transformed into millions years datings by the molecular clock concept, and this was done by establishing a molecular time scale based on the fossil record of the aeluroid Carnivora.  相似文献   
135.
136.
137.
We placed a specific inhibitor of cyclic AMP-dependent protein kinase (PKA) under the control of a prestalk-specific promoter. Cells containing this construct form normally patterned slugs, but under environmental conditions that normally trigger immediate culmination, the slugs undergo prolonged migration. Slugs that eventually enter culmination do so normally but arrest as elongated, hairlike structures that contain neither stalk nor spore cells. Mutant cells do not migrate to the stalk entrance when codeveloped with wild-type cells and show greatly reduced inducibility by DIF, the stalk cell morphogen. These results suggest that the activity of PKA is necessary for the altered pattern of movement of prestalk cells at culmination and their differentiation into stalk cells. We propose a model whereby a protein repressor, under the control of PKA, inhibits precocious induction of stalk cell differentiation by DIF and so regulates the choice between slug migration and culmination.  相似文献   
138.
Reassessing evolutionary relationships of scleractinian corals   总被引:3,自引:0,他引:3  
The widely accepted family tree of Scleractinia published by Wells, based on a combination of morphological coral taxonomy and the fossil record, has recently been revised by Veron. It is now possible to test the validity of some of the conclusions reached by these and other authors by the use of molecular techniques. This paper reviews the results to date. Studies of ribosomal DNA have shown that the Scleractinia are monophyletic, i.e. derived from the same ancestral taxon. Extensions of this same data set now indicate that the Poritidae and Dendrophylliidae, with their fossil antecedents, may each warrant separate suborder status. They further suggest (a) that the Suborder Faviina (faviids, mussids and their allies) should probably be retained as a monophyletic group and (b) that Wells' original account of the isolated position of the Pocilloporidae and Astrocoeniidae is correct. These conclusions all accord with Veron's family tree. However, the Fungiina, even after removal of the Poritidae, are unlikely to be a monophyletic group at suborder level. The molecular data further show that externally observable morphological characters used in the taxonomy of extant corals distinguish families more reliably than do internal micro-skeletal characters frequently used in coral palaeontology.  相似文献   
139.
140.
Most cells experience an active and variable fluid environment, in which hydrodynamic forces can affect aspects of cell physiology including gene regulation, growth, nutrient uptake, and viability. The present study describes a rapid yet reversible change in cell morphology of the marine dinoflagellate Ceratocorys horrida Stein, due to fluid motion. Cells cultured under still conditions possess six large spines, each almost one cell diameter in length. When gently agitated on an orbital shaker under conditions simulating fluid motion at the sea surface due to light wind or surface chop, as determined from digital particle imaging velocimetry, population growth was inhibited and a short‐spined cell type appeared that possessed a 49% mean decrease in spine length and a 53% mean decrease in cell volume. The reduction in cell size appeared to result primarily from a 39% mean decrease in vacuole size. Short‐spined cells were first observed after 1 h of agitation at 20°C; after 8 to 12 d of continuous agitation, long‐spined cells were no longer present. The morphological change was completely reversible; in previously agitated populations devoid of long‐spined cells, cells began to revert to the long‐spined morphology within 1 d after return to still conditions. During morphological reversal, spines on isolated cells grew up to 10 μm·d?1. In 30 d the population morphology had returned to original proportions, even though the overall population growth was zero during this time. The reversal did not occur as a result of cell division, because single‐cell studies confirmed that the change occurred in the absence of cell division and much faster than the 16‐d doubling time. The threshold level of agitation causing morphology change in C. horrida was too low to inhibit population growth in the shear‐sensitive dinoflagellate Lingulodinium polyedrum. At the highest level of agitation tested, there was negative population growth in C. horrida cultures, indicating that fluid motion caused cell mortality. Small, spineless cells constituted a small percentage of the population under all conditions. Although their abundance did not change, single‐cell studies and morphological characteristics suggest that the spineless cells can rapidly transform to and from other cell types. The sinking rate of individual long‐spined cells in still conditions was significantly less than that of short‐spined cells, even though the former are larger and have a higher cell density. These measurements demonstrate that the long spines of C. horrida reduce cell sinking. Shorter spines and reduced swimming would allow cells to sink away from turbulent surface conditions more rapidly. The ecological importance of the morphological change may be to avoid conditions that inhibit population growth and potentially cause cell damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号