首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  19篇
  2021年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有19条查询结果,搜索用时 0 毫秒
11.
DNA damage is a proposed pathogenic factor in neurodegenerative disorders such as Parkinson disease. To probe the underpinning mechanism of such neuronal perturbation, we sought to produce an experimental model of DNA damage. We thus first assessed DNA damage by in situ nick translation and emulsion autoradiography in the mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 20 mg/kg, ip, every 2 h), a neurotoxin known to produce a model of Parkinson disease. Here we show that DNA strand breaks occur in vivo in this mouse model of Parkinson disease with kinetics and a topography that parallel the degeneration of substantia nigra neurons, as assessed by FluoroJade labeling. Previously, nitric oxide synthase and cyclooxygenase-2 (Cox-2) were found to modulate MPTP-induced dopaminergic neuronal death. We thus assessed the contribution of these enzymes to DNA damage in mice lacking neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), or Cox-2. We found that the lack of Cox-2 and nNOS activities but not of iNOS activity attenuated MPTP-related DNA damage. We also found that not only nuclear, but also mitochondrial, DNA is a target for the MPTP insult. These results suggest that the loss of genomic integrity can be triggered by the concerted actions of nNOS and Cox-2 and provide further support to the view that DNA damage may contribute to the neurodegenerative process in Parkinson disease.  相似文献   
12.
13.
14.
Oxidative stress is implicated in the death of dopaminergic neurons in Parkinson's disease and in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) model of Parkinson's disease. Oxidative species that might mediate this damage include hydroxyl radical, tyrosyl radical, or reactive nitrogen species such as peroxynitrite. In mice, we showed that MPTP markedly increased levels of o, o'-dityrosine and 3-nitrotyrosine in the striatum and midbrain but not in brain regions resistant to MPTP. These two stable compounds indicate that tyrosyl radical and reactive nitrogen species have attacked tyrosine residues. In contrast, MPTP failed to alter levels of ortho-tyrosine in any brain region we studied. This marker accumulates when hydroxyl radical oxidizes protein-bound phenylalanine residues. We also showed that treating whole-brain proteins with hydroxyl radical markedly increased levels of ortho-tyrosine in vitro. Under identical conditions, tyrosyl radical, produced by the heme protein myeloperoxidase, selectively increased levels of o,o'-dityrosine, whereas peroxynitrite increased levels of 3-nitrotyrosine and, to a lesser extent, of ortho-tyrosine. These in vivo and in vitro findings implicate reactive nitrogen species and tyrosyl radical in MPTP neurotoxicity but argue against a deleterious role for hydroxyl radical in this model. They also show that reactive nitrogen species and tyrosyl radical (and consequently protein oxidation) represent an early and previously unidentified biochemical event in MPTP-induced brain injury. This finding may be significant for understanding the pathogenesis of Parkinson's disease and developing neuroprotective therapies.  相似文献   
15.
Chronic administration of haloperidol induced supersensitivity of the pre- and postsynaptic dopaminergic receptors in rat brain. The response of the presynaptic receptors was determined by an enhanced inhibitory effect of apomorphine on dopamine synthesis after gamma-butyrolactone injection. This change in the receptor function was detected both in the nigrostriatal and mesolimbic pathways. Haloperidol also increased the 3H-spiperone binding sites in striatal membranes, indicating supersensitivity of the postsynaptic receptors. Subsequent prolonged treatment with high doses of L-DOPA/carbidopa resulted in a decrease in 3H-spiperone binding sites, but had no effect on the supersensitive presynaptic receptors. It is suggested that tardive dyskinesia may be a state of both pre- and postsynaptic dopamine receptor supersensitivity and that chronic L-DOPA treatment may have a differential effect on these sites.  相似文献   
16.
The binding characteristics and distribution of M1 and M2 muscarinic cholinergic receptors and high-affinity choline uptake sites were studied in the striatum of the rat at 3-4 and 9-12 weeks of age after exposure to unilateral perinatal hypoxic-ischemic brain injury. High-affinity choline uptake sites were labeled with [3H]hemicholinium-3, M1 receptors with [3H]pirenzepine, and M2 receptors with [3H]AF-DX 116. Saturation experiments revealed a significant decrease in the maximal binding capacity (Bmax) for [3H]pirenzepine-labeled M1 receptors in the lesioned caudate/putamen complex in immature rats with moderate brain injury, in comparison with controls. In contrast, the Bmax value for [3H]hemicholinium-3-labeled high-affinity choline uptake sites was significantly increased. No changes in dissociation constants (KD) were observed. These changes were most pronounced in the dorsolateral region of striatum. Striatal regional distribution of [3H]AF-DX 116 was not affected. In mature rats, binding of [3H]pirenzepine returned to control values, whereas [3H]hemicholinium binding showed a persistent increase (23%). The increase in [3H]hemicholinium-3 binding, as a specific marker of cholinergic nerve terminals, is consistent with our prior morphologic studies demonstrating relative preservation of cholinergic neurons and neuropil, and supports the concept that striatal cholinergic systems are resistant to hypoxic-ischemic injury.  相似文献   
17.
Copper/zinc-superoxide dismutase (CuZn-SOD) transgenic mice overexpress the gene for human CuZn-SOD. To assess the effects of the overexpression of CuZn-SOD on the brain scavenging systems, we have measured the activities of manganese-SOD (Mn-SOD), catalase, and glutathione peroxidase (GSH-Px) in various regions of the mouse brain. In nontransgenic mice, cytosolic CuZn-SOD activity was highest in the caudate-putamen complex; this was followed by the brainstem and the hippocampus. The lowest activity was observed in the cerebellum. In transgenic mice, there were significant increases of cytosolic CuZn-SOD activity in all of these regions, with ratios varying from a twofold increase in the brainstem to 3.42-fold in the cerebellum in comparison with nontransgenic mice. Particulate Mn-SOD was similarly distributed in all brain regions, and its levels also were significantly increased in superoxide dismutase (SOD)-transgenic mice. In the brains of nontransgenic mice, cytosolic catalase activity was similar in all brain regions except the cortex, which showed less than 50% of the activity observed in the other regions. In transgenic mice, cytosolic catalase activity was significantly increased, with the cortex showing the greatest changes (133%) in comparison with nontransgenic mice. The smallest increases were observed in the hippocampus (34%). In contrast to what was observed for SOD and catalase, there were no significant changes in cytosolic GSH-Px activity in any of the brain regions examined. The present results indicate that, in addition to displaying marked increases in the levels of brain CuZn-SOD activity, SOD-transgenic mice also exhibit increases in other enzymes that scavenge oxygen-based radicals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
18.
19.
Concurrent administration of lithium (Li) significantly attenuates the dopamine (DA) depleting effects of reserpine and tetrabenazine, but does not change alpha-methyl-p-tyrosine (AMPT) induced DA depletion in rat brain. This effect of Li is probably mediated, in part, by inhibiting the magnesium-dependent binding of both reserpine and tetrabenazine to their specific receptor sites. Such interaction between these drugs may attenuate the beneficial effects of tetrabenazine and reserpine on patients with tardive dyskinesia or tardive dystonia who are treated concurrently with lithium for their psychiatric disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号