首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2831篇
  免费   192篇
  国内免费   1篇
  2023年   7篇
  2022年   5篇
  2021年   42篇
  2020年   16篇
  2019年   25篇
  2018年   38篇
  2017年   36篇
  2016年   77篇
  2015年   112篇
  2014年   120篇
  2013年   161篇
  2012年   236篇
  2011年   192篇
  2010年   117篇
  2009年   133篇
  2008年   187篇
  2007年   186篇
  2006年   161篇
  2005年   159篇
  2004年   148篇
  2003年   111篇
  2002年   132篇
  2001年   42篇
  2000年   30篇
  1999年   42篇
  1998年   40篇
  1997年   36篇
  1996年   45篇
  1995年   30篇
  1994年   26篇
  1993年   37篇
  1992年   34篇
  1991年   25篇
  1990年   21篇
  1989年   23篇
  1988年   19篇
  1987年   10篇
  1986年   21篇
  1985年   22篇
  1984年   17篇
  1983年   16篇
  1982年   13篇
  1981年   11篇
  1980年   10篇
  1979年   6篇
  1978年   9篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1972年   3篇
排序方式: 共有3024条查询结果,搜索用时 15 毫秒
31.
Approximately 20 protein subunits are associated with the PS II complex, not counting subunits of peripheral light-harvesting antenna complexes. However, it is not yet established which proteins specifically are involved in the water-oxidation process. Much evidence supports the concept that the D1/D2 reaction center heterodimer not only plays a central role in the primary photochemistry of Photosystem II, but also is involved in electron donation to P680 and in ligation of the manganese cluster. This evidence includes (a) the primary donor to P680 has been shown to be a redox-active tyrosyl residue (Tyr161) in the D1 protein, and (b) site-directed mutagenesis and computer-assisted modeling of the reaction center heterodimer have suggested several sites with a possible function in manganese ligation. These include Asp170, Gln165 and Gln189 of the D1 protein and Glu69 of the D2 protein as well as the C-terminal portion of the mature D1 protein. Also, hydrophilic loops of the chlorophyll-binding protein CP43 that are exposed at the inner thylakoid surface could be essential for the water-splitting process.In photosynthetic eukaryotes, three lumenal extrinsic proteins, PS II-O (33 kDa), PS II-P (23 kDa) and PS II-Q (16 kDa), influence the properties of the manganese cluster without being involved in the actual catalysis of water oxidation. The extrinsic proteins together may have multiple binding sites to the integral portion of PS II, which could be provided by the D1/D2 heterodimer and CP47. A major role for the PS II-O protein is to stabilize the manganese cluster. Most experimental evidence favors a connection of the PS II-P protein with binding of the Cl- and Ca2+ ions required for the water oxidation, while the PS II-Q protein seems to be associated only with the Cl- requirement. The two latter proteins are not present in PS II of prokaryotic organisms, where their functions may be replaced by a 10–12 kDa subunit and a newly discovered low-potential cytochrome c-550.Abbreviations PS II Photosystem II - PCC Pasteur Culture Collection  相似文献   
32.
33.
Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant–insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators. We show that plant biomass was influenced more strongly by the previous plant community than by the previous summer drought. Plant communities consisted of four congeneric pairs of natives and range expanders, and their responses were not unanimous. Legacy effects affected the abundance of aphids more strongly than pollinators. We conclude that legacies can be contained as soil ‘memories’ that influence aboveground plant community interactions in the next growing season. These soil-borne ‘memories’ can be altered by climate warming-induced plant range shifts and extreme drought.  相似文献   
34.
The development of resistance to anticancer drugs urges the search for different treatment modalities. Several investigators have reported the concomitant development of drug resistance and resistance to natural killer (NK), lymphokine-activated killer (LAK) or monocyte/macrophage cell lysis, while others described unchanged or even increased susceptibility. We investigated this subject in the rat colon carcinoma cell line, CC531-PAR, which is intrinsically multidrug-resistant (MDR), and in three sublines derived from this parental cell line: a cell line with an increased MDR phenotype (CC531-COL), a revertant line from CC531-COL (CC531-REV), which demonstrates enhanced sensitivity to anticancer drugs of the MDR phenotype, and an independently developed cisplatin-resistant line (CC531-CIS). In a 4-h51Cr-release assay we found no difference in susceptibility to NK cell lysis. No significant differences in lysability by adherent LAK (aLAK) cells were observed in a 4-h assay. In a prolonged 20-h51Cr-release assay an enhanced sensitivity to aLAK-cell-mediated lysis was observed in the revertant, P-glycoprotein-negative cell line and in the cisplatin-resistant cell line (CC531-CIS). None of the cell lines was completely resistant to lysis by aLAK cells. Therefore, a role for immunotherapy in the treatment of drug-resistant tumors remains a realistic option.  相似文献   
35.
36.
The flash-induced absorbance change measured at 518 nm (P515) in intact chloroplasts consists of at least 4 kinetically different components. Here the non-electrochromic component, either called phase d or reaction 3, is studied in some detail. The effect of DCMU, DQH2 and DBMIB on the amplitude of reaction 3 and the turnover of cytochrome f and P700 have been monitored, suggesting an involvement of photosystem 1 in the activation of the non-electrochromic absorbance change. This is confirmed by the parallel oscillation pattern found in P700 rereduction and the amplitude of reaction 3.  相似文献   
37.
Epichlorohydrin (ECH) is used in many industrial processes. Different toxic effects of ECH were found in rodents. The metabolism of ECH was investigated before in rats using [14C]ECH. The aim of this investigation was the development of non-radioactive quantitative analytical methods for measuring two urinary metabolites of ECH, namely 3-chloro-2-hydroxypropylmercapturic acid (CHPMA) and α-chlorohydrin (α-CH). The identity of CHPMA and α-CH excreted in urine of rats treated with 5 to 35 mg/kg ECH was confirmed by GC-MS. The quantitative analysis of CHPMA, involving ethyl acetate extraction from acidified urine and subsequent methylation and analysis by gas chromatography-flame photometric detection (GC-FPD), showed a method limit of detection of 2 μg/ml. The analysis of α-CH, based on ethyl acetate extraction and subsequent analysis by GC-ECD, showed a method limit of detection of 2 μg/ml. CHPMA and α-CH derivatives could be determined quantitatively down to concentrations of 0.5 and 0.4 μg/ml urine, respectively, by selected-ion monitoring GC-MS under EI conditions. Cumulative urinary excretion of CHPMA and α-CH by rats treated with ECH were found to be 31 ± 10 and 1.4 ± 0.6% (n = 13) of the ECH dose, respectively. For CHPMA, the dose-excretion relationship suggested partially saturated ECH metabolism. For α-CH, the dose-excretion relationship was linear. With fractionated urine collection it was found that approximately 74 and 84% of the total cumulative excretion of CHPMA and α-CH, respectively, took place within the first 6 h after administration of ECH. From these investigations it is concluded that the GC-FPD and GC-ECD based methods developed are sufficiently sensitive to measure urinary excretion of CHPMA and α-CH in urine from rats administered 5 to 35 mg/kg ECH. It is anticipated that the analysis of CHPMA and α-CH based on GC-MS may be sufficiently sensitive to investigate urinary excretion from humans occupationally exposed to ECH.  相似文献   
38.
The coding of odor intensity by an olfactory receptor neuron model was studied under steady-state stimulation. Our model neuron is an elongated cylinder consisting of the following three components: a sensory dendritic region bearing odorant receptors, a passive region consisting of proximal dendrite and cell body, and an axon. First, analytical solutions are given for the three main physiological responses: (1) odorant-dependent conductance change at the sensory dendrite based on the Michaelis-Menten model, (2) generation and spreading of the receptor potential based on a new solution of the cable equation, and (3) firing frequency based on a Lapicque model. Second, the magnitudes of these responses are analyzed as a function of odorant concentration. Their dependence on chemical, electrical, and geometrical parameters is examined. The only evident gain in magnitude results from the activation-to-conductance conversion. An optimal encoder neuron is presented that suggests that increasing the length of the sensory dendrite beyond about 0.3 space constant does not increase the magnitude of the receptor potential. Third, the sensivities of the responses are examined as functions of (1) the concentration at half-maximum response, (2) the lower and upper concentrations actually discriminated, and (3) the width of the dynamic range. The overall gain in sensitivity results entirely from the conductance-to-voltage conversion. The maximum conductance at the sensory dendrite appears to be the main tuning constant of the neuron because it determines the shift toward low concentrations and the increase in dynamic range. The dynamic range of the model cannot exceed 5.7 log units, for a sensitivity increase at low odor concentration is compensated by a sensitivity decrease at high odor concentration.  相似文献   
39.
The afa-3 gene cluster determines the formation of an afimbrial adhesive sheath that is expressed by uropathogenic as well as diarrhoea-associated Escherichia coli strains. It contains six genes ( afaA–afaF  ), among which the afaE3 gene is known to code for the structural AfaE-III adhesin (previously designated AFA-III), whereas no role has yet been identified for the afaD gene product. The afa-3 gene cluster is closely related to the daa operon that codes for an adhesin, the F1845 adhesin, which is highly related to the AfaE-III adhesin; however, unlike the AfaE-III adhesin, F1845 is a fimbrial adhesin. Reported in this work is the construction of chimeras between the afa-3 and daa operons. Analyses of the phenotypes conferred by these afa-3 / daa chimeric clusters allowed us to conclude that the biogenesis of a fimbrial or an afimbrial adhesin is fully determined by the amino acid sequence of the AfaE-III and F1845 adhesins. Moreover, the role of the AfaD product in the biosynthesis of the afimbrial sheath was assessed by immunogold and immunofluorescence experiments. The AfaD and the AfaE-III products were purified and used to raise rabbit and mouse antisera. Similar to AfaE-III, AfaD was found to be a surface-exposed protein as well as an adhesin; both AfaD and AfaE-III are concomittantly expressed by the bacterial cell. These results demonstrate, for the first time, that the afimbrial adhesive sheath expressed by pathogenic E. coli is composed of two adhesins.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号