首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   22篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   9篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   17篇
  2012年   22篇
  2011年   23篇
  2010年   17篇
  2009年   13篇
  2008年   16篇
  2007年   24篇
  2006年   13篇
  2005年   15篇
  2004年   16篇
  2003年   17篇
  2002年   13篇
  2001年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
31.
About half of the mammalian genome is composed of retroposons. Long interspersed elements (LINEs) and short interspersed elements (SINEs) are the most abundant repetitive elements and account for about 21% and 13% of the human genome, respectively. SINEs have been detected in all major mammalian lineages, except for the South American order Xenarthra, also termed Edentata (armadillos, anteaters, and sloths). Investigating this order, we discovered a novel high-copy-number family of tRNA derived SINEs in the nine-banded armadillo Dasypus novemcinctus, a species that successfully crossed the Central American land bridge to North America in the Pliocene. A specific computer algorithm was developed, and we detected and extracted 687 specific SINEs from databases. Termed DAS-SINEs, we further divided them into six distinct subfamilies. We extracted tRNA(Ala)-derived monomers, two types of dimers, and three subfamilies of chimeric fusion products of a tRNA(Ala) domain and an approximately 180-nt sequence of thus far unidentified origin. Comparisons of secondary structures of the DAS-SINEs' tRNA domains suggest selective pressure to maintain a tRNA-like D-arm structure in the respective founder RNAs, as shown by compensatory mutations. By analysis of subfamily-specific genetic variability, comparison of the proportion of direct repeats, and analysis of self-integrations as well as key events of dimerization and deletions or insertions, we were able to delineate the evolutionary history of the DAS-SINE subfamilies.  相似文献   
32.
Verkhivker GM 《Proteins》2005,58(3):706-716
The relationship between folding mechanism coupled to binding and structure prediction of the tertiary complexes is studied for the p27(Kip) (1) protein which has an intrinsically disordered unbound form and undergoes a functional folding transition during complex formation with the phosphorylated cyclin A-cyclin-dependent kinase 2 (Cdk2) binary complex. Hierarchy of p27(Kip1) structural loss determined in our earlier studies from temperature-induced Monte Carlo simulations and subsequent characterization of the transition state ensemble (TSE) for the folding reaction have shown that simultaneous ordering of the p27(Kip1) native intermolecular interface for the beta-hairpin and beta-strand secondary structure elements is critical for nucleating a rapid kinetic transition to the native tertiary complex. In the present study, we investigate the effect of forming specific intermolecular interactions on structure prediction of the p27(Kip1) tertiary complex. By constraining different secondary structure elements of p27(Kip1) in their native bound conformations and conducting multiple simulated annealing simulations, we analyze differences in the success rate of predicting the native structure of p27(Kip1) in the tertiary complex. In accordance with the nucleation-condensation mechanism, we have found that further stabilization of the native intermolecular interface for the beta-hairpin and beta-strand elements of p27(Kip1), that become ordered in the TSE, but are hardly populated in the unbound state, results in a consistent acquisition of the native bound structure. Conversely, the excessive stablization of the local secondary structure elements, which are rarely detected in the TSE, has a detrimental effect on convergence to the native bound structure.  相似文献   
33.
We previously reported on a new boiling stable protein isolated from aspen plants (Populus tremula), which we named SP1. SP1 is a stress-related protein with no significant sequence homology to other stress-related proteins. It is a 108-amino-acid hydrophilic polypeptide with a molecular mass of 12.4 kDa (Wang, W. X., Pelah, D., Alergand, T., Shoseyov, O., and Altman, A. (2002) Plant Physiol. 130, 865-875) and is found in an oligomeric form. Preliminary electron microscopy studies and matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that SP1 is a dodecamer composed of two stacking hexamers. We performed a SDS-PAGE analysis, a differential scanning calorimetric study, and crystal structure determination to further characterize SP1. SDS-PAGE indicated a spontaneous assembly of SP1 to one stable oligomeric form, a dodecamer. Differential scanning calorimetric showed that SP1 has high thermostability i.e. Tm of 107 degrees C (at pH 7.8). The crystal structure of SP1 was initially determined to 2.4 A resolution by multi-wavelength anomalous dispersion method from a crystal belonging to the space group I422. The phases were extended to 1.8 A resolution using data from a different crystal form (P21). The final refined molecule includes 106 of the 108 residues and 132 water molecules (on average for each chain). The R-free is 20.1%. The crystal structure indicated that the SP1 molecule has a ferredoxin-like fold. Strong interactions between each two molecules create a stable dimer. Six dimers associate to form a ring-like-shaped dodecamer strongly resembling the particle visualized in the electron microscopy studies. No structural similarity was found between the crystal structure of SP1 and the crystal structure of other stress-related proteins such as small heat shock proteins, whose structure has been already determined. This structural study further supports our previous report that SP1 may represent a new family of stress-related proteins with high thermostability and oligomerization.  相似文献   
34.
35.
Conformational changes in oat phytochrome A (phy) in solution after photoexcitation of the red-absorbing form (Pr) were studied in time-domain by the pulsed laser-induced transient grating technique. It was found that the diffusion coefficient (D) of far-red-absorbing form (Pfr) of large phy (1.3 x 10(-11) m(2) s(-1)) is markedly reduced compared with that of Pr (5.8 x 10(-11) m(2) s(-1)). This large reduction indicates that the conformation of Pfr is significantly changed from that of Pr, so that the intermolecular interaction with water molecules increases. This change completes within 1 ms after the photoexcitation. On the other hand, D of Pr of intact phy (4.1 x 10(-11) m(2) s(-1)) first decreases upon photoexcitation to 0.89 x 10(-11) m(2) s(-1) within 1 ms and then gradually increases with a time constant of 100 ms to the value of Pfr, 1.7 x 10(-11) m(2) s(-1). This slower phase suggests that the conformation of the N-terminal region changes with 100 ms to decrease the intermolecular interaction with water after a global change in the large phy region. The increase of D was interpreted in terms of alpha-helix formation in the Pfr form from the random coil structure in the Pr form.  相似文献   
36.
Microtubule (MT) dynamic instability is fundamental to many cell functions, but its mechanism remains poorly understood, in part because it is difficult to gain information about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale computational model of MT assembly that is consistent with tubulin structure and biochemistry, displays dynamic instability, and covers experimentally relevant spans of time. It allows us to correlate macroscopic behaviors (dynamic instability parameters) with microscopic structures (tip conformations) and examine protofilament structure as the tip spontaneously progresses through both catastrophe and rescue. The model's behavior suggests that several commonly held assumptions about MT dynamics should be reconsidered. Moreover, it predicts that short, interprotofilament "cracks" (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks influence both catastrophe and rescue. We conclude that experimentally observed microtubule behavior can best be explained by a "stochastic cap" model in which tubulin subunits hydrolyze GTP according to a first-order reaction after they are incorporated into the lattice; catastrophe and rescue result from stochastic fluctuations in the size, shape, and extent of lateral bonding of the cap.  相似文献   
37.
Previously, we have reported that intact Potato virus X (PVX) virions cannot be translated in cell-free systems, but acquire this capacity by the binding of PVX-specific triple gene block protein 1 (TGBp1) or after phosphorylation of the exposed N-terminal segment of intravirus coat protein (CP) by protein kinases. With the help of in vitro mutagenesis, a nonphosphorylatable PVX mutant (denoted ST PVX) was prepared in which all 12 S and T residues in the 20-residue-long N-terminal CP segment were substituted by A or G. Contrary to expectations, ST PVX was infectious, produced normal progeny and was translated in vitro in the absence of any additional factors. We suggest that the N-terminal PVX CP segment somehow participates in virion assembly in vivo and that CP subunits in ST virions may differ in structure from those in the wild-type (UK3 strain). In the present work, to test this suggestion, we performed a comparative tritium planigraphy study of CP structure in UK3 and ST virions. It was found that the profile of tritium incorporation into ST mutant virions in some CP segments differed from that of normal UK3 virions and from UK3 complexed with the PVX movement protein TGBp1. It is proposed that amino acid substitutions in ST CP and the TGBp1-driven remodelling of UK3 virions induce structural alterations in intravirus CPs. These alterations affect the predicted RNA recognition motif of PVX CP, but in different ways: for ST PVX, labelling is increased in α-helices 6 and 7, whereas, in remodelled UK3, labelling is increased in the β-sheet strands β3, β4 and β5.  相似文献   
38.
Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation.  相似文献   
39.
Dinucleoside polyphosphates are well described as direct vasoconstrictors and as mediators with strong proliferative properties, however, less is known about their effects on nucleotide-converting pathways. Therefore, the present study investigates the effects of Ap(4)A (diadenosine tetraphosphate), Up(4)A (uridine adenosine tetraphosphate) and Ap(5)A (diadenosine pentaphosphate) and the non-selective P2 antagonist suramin on human serum and endothelial nucleotide-converting enzymes. Human serum and HUVECs (human umbilical vein endothelial cells) were pretreated with various concentrations of dinucleotide polyphosphates and suramin. Adenylate kinase and NDP kinase activities were then quantified radiochemically by TLC analysis of the ATP-induced conversion of [(3)H]AMP and [(3)H]ADP into [(3)H]ADP/ATP and [(3)H]ATP respectively. Endothelial NTPDase (nucleoside triphosphate diphosphohydrolase) activity was additionally determined using [(3)H]ADP and [(3)H]ATP as preferred substrates. Dinucleoside polyphosphates and suramin have an inhibitory effect on the serum adenylate kinase [pIC(50) values (-log IC(50)): Ap(4)A, 4.67+/-0.03; Up(4)A, 3.70+/-0.10; Ap(5)A, 6.31+/-0.03; suramin, 3.74+/-0.07], as well as on endothelial adenylate kinase (pIC(50) values: Ap(4)A, 4.17+/-0.07; Up(4)A, 2.94+/-0.02; Ap(5)A, 5.97+/-0.04; suramin, 4.23+/-0.07), but no significant effects on serum NDP kinase, emphasizing the selectivity of these inhibitors. Furthermore, Ap(4)A, Up(4)A, Ap(5)A and suramin progressively inhibited the rates of [(3)H]ADP (pIC(50) values: Ap(4)A, 3.38+/-0.09; Up(4)A, 2.78+/-0.06; Ap(5)A, 4.42+/-0.11; suramin, 4.10+/-0.07) and [(3)H]ATP (pIC(50) values: Ap(4)A, 3.06+/-0.06; Ap(5)A, 3.05+/-0.12; suramin, 4.14+/-0.05) hydrolyses by cultured HUVECs. Up(4)A has no significant effect on the endothelial NTPDase activity. Although the half-lives for Ap(4)A, Up(4)A and Ap(5)A in serum are comparable with the incubation times of the assays used in the present study, secondary effects of the dinucleotide metabolites are not prominent for these inhibitory effects, since the concentration of metabolites formed are relatively insignificant compared with the 800 mumol/l ATP added as a phosphate donor in the adenylate kinase and NDP kinase assays. This comparative competitive study suggests that Ap(4)A and Ap(5)A contribute to the purinergic responses via inhibition of adenylate-kinase-mediated conversion of endogenous ADP, whereas Up(4)A most likely mediates its vasoregulatory effects via direct binding-mediated mechanisms.  相似文献   
40.
It has been shown that small interfering RNA (siRNA) partial knockdown of the α2δ1 dihydropyridine receptor subunits cause a significant increase in the rate of activation of the L-type Ca2+ current in myotubes but have little or no effect on skeletal excitation-contraction coupling. This study used permanent siRNA knockdown of α2δ1 to address two important unaddressed questions. First, does the α2δ1 subunit contribute to the size and/or spacing of tetradic particles? Second, is the α2δ1 subunit important for excitation-coupled calcium entry? We found that the size and spacing of tetradic particles is unaffected by siRNA knockdown of α2δ1, indicating that the visible particle represents the α1s subunit. Strikingly, >97% knockdown of α2δ1 leads to a complete loss of excitation-coupled calcium entry during KCl depolarization and a more rapid decay of Ca2+ transients during bouts of repetitive electrical stimulation like those occurring during normal muscle activation in vivo. Thus, we conclude that the α2δ1 dihydropyridine receptor subunit is physiologically necessary for sustaining Ca2+ transients in response to prolonged depolarization or repeated trains of action potentials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号