全文获取类型
收费全文 | 95篇 |
免费 | 3篇 |
专业分类
98篇 |
出版年
2023年 | 1篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 3篇 |
2012年 | 4篇 |
2011年 | 8篇 |
2010年 | 11篇 |
2009年 | 7篇 |
2008年 | 9篇 |
2007年 | 4篇 |
2006年 | 1篇 |
2002年 | 1篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1955年 | 1篇 |
1951年 | 1篇 |
1948年 | 1篇 |
1947年 | 1篇 |
1943年 | 2篇 |
1942年 | 3篇 |
1941年 | 3篇 |
1940年 | 5篇 |
1939年 | 2篇 |
1937年 | 1篇 |
1936年 | 1篇 |
1933年 | 1篇 |
1932年 | 1篇 |
1930年 | 2篇 |
1929年 | 1篇 |
1928年 | 1篇 |
排序方式: 共有98条查询结果,搜索用时 0 毫秒
31.
OLIVERA VUCIC‐PESTIC ROSWITHA B. EHNES BJÖRN C. RALL ULRICH BROSE 《Global Change Biology》2011,17(3):1301-1310
Predictions on the consequences of the rapidly increasing atmospheric CO2 levels and associated climate warming for population dynamics, ecological community structure and ecosystem functioning depend on mechanistic energetic models of temperature effects on populations and their interactions. However, such mechanistic approaches combining warming effects on metabolic (energy loss of organisms) and feeding rates (energy gain by organisms) remain a key, yet elusive, goal. Aiming to fill this void, we studied the metabolic rates and functional responses of three differently sized, predatory ground beetles on one mobile and one more resident prey species across a temperature gradient (5, 10, 15, 20, 25 and 30 °C). Synthesizing metabolic and functional‐response theory, we develop novel mechanistic predictions how predator–prey interaction strengths (i.e., functional responses) should respond to warming. Corroborating prior theory, warming caused strong increases in metabolism and decreases in handling time. Consistent with our novel model, we found increases in predator attack rates on a mobile prey, whereas attack rates on a mostly resident prey remained constant across the temperature gradient. Together, these results provide critically important information that environmental warming generally increases the direct short‐term per capita interaction strengths between predators and their prey as described by functional‐response models. Nevertheless, the several fold stronger increase in metabolism with warming caused decreases in energetic efficiencies (ratio of per capita feeding rate to metabolic rate) for all predator–prey interactions. This implies that warming of natural ecosystems may dampen predator–prey oscillations thus stabilizing their dynamics. The severe long‐term implications; however, include predator starvation due to energetic inefficiency despite abundant resources. 相似文献
32.
33.
34.
35.
PER ALSTRÖM ISAO NISHIUMI YOSHIMITSU SHIGETA KEISUKE UEDA MARTIN IRESTEDT MATS BJÖRKLUND URBAN OLSSON 《Ibis》2011,153(2):395-410
The Arctic Warbler Phylloscopus borealis breeds across the northern Palaearctic and northwestern‐most Nearctic, from northern Scandinavia to Alaska, extending south to southern Japan, and winters in Southeast Asia, the Philippines and Indonesia. Several subspecies have been described based on subtle morphological characteristics, although the taxonomy varies considerably among different authors. A recent study (T. Saitoh et al. (2010) BMC Evol. Biol. 10 : 35) identified three main mitochondrial DNA clades, corresponding to: (1) continental Eurasia and Alaska, (2) south Kamchatka, Sakhalin and northeast Hokkaido, and (3) most of Japan (Honshu, Shikoku, Kyushu). These three clades were estimated to have diverged during the late Pliocene to early Pleistocene (border at c. 2.6 million years ago). Differences in morphometrics have also been reported among members of the three clades (T. Saitoh et al. (2008) Ornithol. Sci. 7 : 135–142). Here we analyse songs and calls from throughout the range of the Arctic Warbler, and conclude that these differ markedly and consistently among the populations representing the three mitochondrial clades. Kurile populations, for which no sequence data are available, are shown to belong to the second clade. To determine the correct application of available scientific names, mitochondrial DNA was sequenced from three name‐bearing type specimens collected on migration or in the winter quarters. Based on the congruent variation in mitochondrial DNA, morphology and vocalizations, we propose that three species be recognized: Arctic Warbler Phylloscopus borealis (sensu stricto) (continental Eurasia and Alaska), Kamchatka Leaf Warbler Phylloscopus examinandus (Kamchatka (at least the southern part), Sakhalin, Hokkaido and Kurile Islands), and Japanese Leaf Warbler Phylloscopus xanthodryas (Japan except Hokkaido). 相似文献
36.
37.
38.
Karl W. Verhoeff 《Zoomorphology》1933,27(4):732-748
Ohne Zusammenfassung 相似文献
39.
Ohne Zusammenfassung 相似文献
40.
Karl W. Verhoeff 《Zoomorphology》1930,18(4):575-668
Ohne Zusammenfassung 相似文献