首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   51篇
  国内免费   1篇
  2022年   2篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   11篇
  2016年   15篇
  2015年   14篇
  2014年   15篇
  2013年   23篇
  2012年   17篇
  2011年   22篇
  2010年   19篇
  2009年   31篇
  2008年   19篇
  2007年   16篇
  2006年   23篇
  2005年   14篇
  2004年   10篇
  2003年   13篇
  2002年   16篇
  2001年   9篇
  2000年   10篇
  1999年   11篇
  1998年   8篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   4篇
  1987年   4篇
  1985年   7篇
  1984年   4篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1954年   2篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
371.
372.
The Arabidopsis thaliana AtHMA1 protein is a member of the P(IB)-ATPase family, which is implicated in heavy metal transport. However, sequence analysis reveals that AtHMA1 possesses a predicted stalk segment present in SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase)-type pumps that is involved in inhibition by thapsigargin. To analyze the ion specificity of AtHMA1, we performed functional complementation assays using mutant yeast strains defective in Ca(2+) homeostasis or heavy metal transport. The heterologous expression of AtHMA1 complemented the phenotype of both types of mutants and, interestingly, increased heavy metal tolerance of wild-type yeast. Biochemical analyses were performed to describe the activity of AtHMA1 in microsomal fractions isolated from complemented yeast. Zinc, copper, cadmium, and cobalt activate the ATPase activity of AtHMA1, which corroborates the results of metal tolerance assays. The outcome establishes the role of AtHMA1 in Cd(2+) detoxification in yeast and suggests that this pump is able to transport other heavy metals ions. Further analyses were performed to typify the active Ca(2+) transport mediated by AtHMA1. Ca(2+) transport displayed high affinity with an apparent K(m) of 370 nm and a V(max) of 1.53 nmol mg(-1) min(-1). This activity was strongly inhibited by thapsigargin (IC(50) = 16.74 nm), demonstrating the functionality of its SERCA-like stalk segment. In summary, these results demonstrate that AtHMA1 functions as a Ca(2+)/heavy metal pump. This protein is the first described plant P-type pump specifically inhibited by thapsigargin.  相似文献   
373.
Iron is an essential nutrient that participates as a redox co-factor in a broad range of cellular processes. In response to iron deficiency, the budding yeast Saccharomyces cerevisiae induces the expression of the Cth1 and Cth2 mRNA-binding proteins to promote a genome-wide remodeling of cellular metabolism that contributes to the optimal utilization of iron. Cth1 and Cth2 proteins bind to specific AU-rich elements within the 3'-untranslated region of many mRNAs encoding proteins involved in iron-dependent pathways, thereby promoting their degradation. Here, we show that the DEAD box Dhh1 helicase plays a crucial role in the mechanism of Cth2-mediated mRNA turnover. Yeast two-hybrid experiments indicate that Cth2 protein interacts in vivo with the carboxyl-terminal domain of Dhh1. We demonstrate that the degradation of succinate dehydrogenase SDH4 mRNA, a known target of Cth2 on iron-deficient conditions, depends on Dhh1. In addition, we localize the Cth2 protein to cytoplasmic processing bodies in strains defective in the 5' to 3' mRNA decay pathway. Finally, the degradation of trapped SDH4 mRNA intermediates by Cth2 supports the 5' to 3' directionality of mRNA turnover. Taken together, these results suggest that Cth2 protein recruits the Dhh1 helicase to ARE-containing mRNAs to promote mRNA decay.  相似文献   
374.
The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor–Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.  相似文献   
375.
The Root effect is a widespread property in fish hemoglobins (Hbs) that produces a drastic reduction of cooperativity and oxygen-binding ability at acidic pH. Here, we report the high-resolution structure of the deoxy form of Hb isolated from the Antarctic fish Trematomus bernacchii (HbTb) crystallized at pH 6.2 and 8.4. The structure at acidic pH has been previously determined at a moderate resolution (Ito et al., J Mol Biol 1995;250:648-658). Our results provide a clear picture of the events occurring upon the pH increase from 6.2 to 8.4, observed within a practically unchanged crystal environment. In particular, at pH 8.4, the interaspartic hydrogen bond at the alpha(1)beta(2) interface is partially broken, suggesting a pK(a) close to 8.4 for Asp95alpha. In addition, a detailed survey of the histidine modifications, caused by the change in pH, also indicates that at least three hot regions of the molecule are modified (Ebeta helix, Cbeta-tail, CDalpha corner) and can be considered to be involved at various levels in the release of the Root protons. Most importantly, at the CDalpha corner, the break of the salt bridge Asp48alpha-His55alpha allows us to describe a detailed mechanism that transmits the modification from the CDalpha corner far to the alpha heme. More generally, the results shed light on the role played by the histidine residues in modulating the strength of the Root effect and also support the emerging idea that the structural determinants, at least for a part of the Root effect, are specific of each Hb endowed with this property.  相似文献   
376.
Based on indirect evidence, a role for synaptically released copper and zinc as modulators of neuronal activity has been proposed. To test this proposal directly, we studied the effect of copper, zinc, and other divalent cations on voltage-dependent currents in dissociated toad olfactory neurons and on their firing rate induced by small depolarizing currents. Divalent cations in the nanomolar range sped up the activation kinetics and increased the amplitude of the inward sodium current. In the micromolar range, they caused a dose dependent inhibition of the inward Na+ and Ca2+ currents (INa and ICa) and reduced de amplitude of the Ca2+-dependent K+ outward current (ICa-K). On the other hand, the firing rate of olfactory neurons increased when exposed to nanomolar concentration of divalent cations and decreased when exposed to micromolar concentrations. This biphasic effect of divalent cations on neuronal excitability may be explained by the interaction of these ions with high and low affinity sites in voltage-gated channels. Our results support the idea that these ions are normal modulators of neuronal excitability.  相似文献   
377.
Iron (Fe) is an essential cofactor for a wide range of cellular processes. We have previously demonstrated in yeast that Cth2 is expressed during Fe deficiency and promotes degradation of a battery of mRNAs leading to reprogramming of Fe-dependent metabolism and Fe storage. We report here that the Cth2-homologous protein Cth1 is transiently expressed during Fe deprivation and participates in the response to Fe deficiency through the degradation of mRNAs primarily involved in mitochondrially localized activities including respiration and amino acid biosynthesis. In parallel, wild-type cells, but not cth1Deltacth2Delta cells, accumulate mRNAs encoding proteins that function in glucose import and storage and store high levels of glycogen. In addition, Fe deficiency leads to phosphorylation of Snf1, an AMP-activated protein kinase family member required for the cellular response to glucose starvation. These studies demonstrate a metabolic reprogramming as a consequence of Fe starvation that is dependent on the coordinated activities of two mRNA-binding proteins.  相似文献   
378.
This work describes a practical way to optimize the high level of the chef creativity to produce rational approaches to food design. It is particularly focused on the preparation of two dishes: bubbly juice and false skin. For the first dish, three samples were prepared with egg white protein (EWP) and xanthan gum at pH 4.6 and pH 7.0. At pH 4.6 (isoelectric point), there were substantial differences of the interfacial dilational modulus of EWP when xanthan gum was added. At 1 mg/ml xanthan, the system showed a very strong interface (high viscoelasticity) compared to the other samples. Measuring half drainage time revealed which samples were the most stable. The properties discussed were related to stability. For the false skin dish, edible films were made by gelatin extracted from cod skins (A solution) and a mixture of cod skin gelatin and commercial gelatin (AG solution). The results showed that tensile strength (TS) of gelatin films increases almost by 25%, elongation at break (EAB) by 14%, and the Young modulus (E) by almost 100% when increasing protein concentration. To confirm water plasticizer effect, the results were compared to a gelatin film made with 30% glycerol (plasticizer). Water content affects to a great extent the mechanical properties of the films. Finally, images of the dishes are presented in order to have a full view of the purpose and the results obtained. This research has been supported by the Department of Agriculture and Fisheries from the Basque Government. This work was presented at the conference Delivery of Functionality in Complex Food Systems, Amherst, USA, October, 2007.  相似文献   
379.
380.
The brains of rats and humans express the enzymes required for the synthesis of aldosterone from cholesterol, including the 3beta-steroid dehydrogenase that catalyzes the conversion of pregnenolone to progesterone in the pathway of adrenal steroid synthesis. Salt-induced hypertension in the Dahl inbred salt-sensitive (SS/jr) rat is associated with normal to low levels of circulating aldosterone, yet it is abrogated by the central infusion of mineralocorticoid receptor antagonists. To test the hypothesis that de novo synthesis of aldosterone in the brain has a pathophysiological role in the salt-induced hypertension of the SS rat, the 3beta-steroid dehydrogenase antagonist trilostane was infused continuously intracerebroventricularly or subcutaneously in two different cohorts of Dahl SS/jr rats, one female, the other male, during and after the development of salt-induced hypertension. The doses of trilostane used had no effect on blood pressure when infused subcutaneously. Animals receiving vehicle intracerebroventricularly experienced a 30- to 45-mmHg increase in systolic blood pressure measured by tail cuff. The intracerebroventricular, but not subcutaneous, infusion of 0.3 microg/h trilostane effectively blocked the increase in systolic blood pressure and reversed the hypertension produced by drinking 0.9% saline. Trilostane was equally effective in female and male rats. Weight gain, serum aldosterone and corticosterone concentrations, and behavior assessed subjectively and by elevated plus maze were unchanged by the trilostane treatment. These studies suggest that the synthesis in the brain of a mineralocorticoid receptor agonist, probably aldosterone, is responsible in part for the salt-induced hypertension of the inbred Dahl SS/jr rat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号