首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3905篇
  免费   349篇
  国内免费   6篇
  4260篇
  2024年   5篇
  2023年   21篇
  2022年   63篇
  2021年   106篇
  2020年   52篇
  2019年   70篇
  2018年   100篇
  2017年   80篇
  2016年   148篇
  2015年   204篇
  2014年   227篇
  2013年   298篇
  2012年   307篇
  2011年   306篇
  2010年   198篇
  2009年   180篇
  2008年   206篇
  2007年   216篇
  2006年   214篇
  2005年   212篇
  2004年   199篇
  2003年   187篇
  2002年   169篇
  2001年   38篇
  2000年   28篇
  1999年   36篇
  1998年   57篇
  1997年   39篇
  1996年   22篇
  1995年   29篇
  1994年   16篇
  1993年   22篇
  1992年   18篇
  1991年   17篇
  1990年   11篇
  1989年   13篇
  1988年   9篇
  1987年   15篇
  1986年   6篇
  1985年   14篇
  1984年   13篇
  1983年   12篇
  1982年   10篇
  1981年   7篇
  1980年   13篇
  1979年   8篇
  1977年   6篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
排序方式: 共有4260条查询结果,搜索用时 15 毫秒
141.
Neuropilin (Nrp), a cell surface receptor for class 3 semaphorins and for certain heparin forms of vascular endothelial growth factors, functions in many biological processes including axon guidance, neural cell migration and angiogenesis in the development of the nervous system and the cardiovascular system. To understand the role of neuropilins in zebrafish embryogenesis, we have cloned three zebrafish neuropilin homologues, nrp1b, nrp2a and nrp2b. Based on synteny, zebrafish nrp1b and the previously cloned nrp1a are orthologous to human nrp1, and zebrafish nrp2a and 2b orthologous to human nrp2. We have characterized the expression patterns of these four zebrafish neuropilin genes in wild type embryos from the beginning of somitogenesis to 48 h post-fertilization. Zebrafish nrp1a is expressed in the neural tube including telencephalon, epithalamus, cells along the axonal trajectory of the posterior commissure and the medial longitudinal fascicle, hindbrain neurons, vagus motor neurons and spinal motoneurons. Zebrafish nrp1b is expressed in the nose, the cranial neural crest cell (NCC) derived tissue underlying the hypothalamus, endothelial precursors and the trunk and tail vasculature. Zebrafish nrp2a is expressed in telencephalon, anterior pituitary, oculomotor and trochlear motor neurons, cells along the supra-optic and posterior commissures, hindbrain rhombomere 1, hindbrain neurons, cranial NCCs and sclerotome. Zebrafish nrp2b is expressed in telencephalon, thalamus, hypothalamus, epiphysis, cells along the anterior and posterior commissures, post-optic and supra-optic commissures and the olfactory axonal trajectory, hindbrain neurons, cranial NCCs, somites and spinal cord neurons.  相似文献   
142.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   
143.
Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR(-/-) mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR(-/-) brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1alpha or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival effect of insulin on IGF-IR(-/-) brown adipocytes was elicited even in the absence of phosphatidylinositol 3-kinase/Akt signaling. Thus, our results demonstrate for the first time the unique role of IGF-IR in maintaining the balance of death and survival in fetal brown adipocytes.  相似文献   
144.
145.
We present evidence suggesting that gap-junctional hemichannels (GJH) may be involved in acute ischemic injury of human renal proximal tubule cells (hPT cells). Two GJH, from neighboring cells, join to form an intercellular gap junction channel (GJC). Undocked GJH are permeable to hydrophilic molecules up to 1 kDa, and their opening can significantly alter cell homeostasis. Both GJC and GJH formed by connexin 43 (Cx43) are activated by dephosphorylation. Hence, we tested whether GJH activation during ATP depletion contributes to cell damage in renal ischemia. We found that hPT cells in primary culture express Cx43 (RT-PCR and Western-blot analysis) at the plasma membrane region (immunofluorescence). Divalent-cation removal or pharmacological ATP depletion increased cell loading with the hydrophilic dye 5/6 carboxy-fluorescein (CF, 376 Da) but not with fluorescein-labeled dextran (>1500 Da). Endocytosis and activation of P2X channels were experimentally ruled out. Several GJC blockers inhibited the loading elicited by PKC inhibition. Double labeling (CF and propidium iodide) showed that both Ca(2+) removal and ATP depletion increase the percentage of necrotic cells. Gadolinium reduced both the loading and the degree of necrosis during divalent-cation removal or ATP depletion. In conclusion, GJH activation may play an important role in the damage of human renal proximal tubule cells during ATP depletion. These studies are the first to provide evidence supporting a role of GJH in causing injury in epithelial cells in general and in renal-tubule cells in particular.  相似文献   
146.
This article focuses on the initiation pathway of mucin-type O-glycosylation in helminth parasites. The presence of the GalNAc-O-Ser/Thr structure, also known as Tn antigen, a truncated determinant related to aberrant glycosylation in mammal cells, and the activity of the UDP-GalNAc:polypeptide N-acetyl-galactosaminyltransferase (ppGaNTase), the enzyme responsible for its synthesis, were studied in species from major taxonomic groups. Tn reactivity was determined in extracts from Taenia hydatigena, Mesocestoides corti, Fasciola hepatica, Nippostrongylus brasiliensis, and Toxocara canis using the monoclonal antibody 83D4. The Tn determinant was revealed in all preparations, and multiple patterns of Tn-bearing glycoproteins were observed by immunoblotting. Additionally, the first evidence that helminth parasites express ppGaNTase activity was obtained. This enzyme was studied in extracts from Echinococcus granulosus, F. hepatica, and T. canis by measuring the incorporation of UDP-(3H)GalNAc to both deglycosylated ovine syalomucin (dOSM) and synthetic peptide sequences derived from tandem repeats of human mucins. Whereas significant levels of ppGaNTase activity were detected in all the extracts when dOSM was used as a multisite acceptor, it was only observed in F. hepatica and E. granulosus extracts when mucin-derived peptides were used, suggesting that T. canis ppGaNTase enzyme(s) may represent a member of the gene family with a more restricted specificity for worm O-glycosylation motifs. The widespread expression of Tn antigen, capable of evoking both humoral and cellular immunity, strongly suggests that simple mucin-type O-glycosylation does not constitute an aberrant phenomenon in helminth parasites.  相似文献   
147.
In mice, activation of the Notch pathway in T cells by antigen-presenting cells overexpressing Notch ligands favors differentiation of regulatory T lymphocytes responsible for antigen-specific tolerance. To determine whether this mechanism operates in human T cells, we used Epstein-Barr virus-positive lymphoblastoid cell lines (EBV-LCL) as our (viral) antigen-presenting cells and overexpressed the Notch ligand Jagged-1 (EBV-LCL J1) by adenoviral transduction. The EBV-LCL J1s were cocultured with autologous T cells, and the proliferative and cytotoxic responses to EBV antigens were measured. Transduction had no effect on EBV-LCL expression of major histocompatibility complex (MHC) antigens or of costimulatory molecules CD80, CD86, and CD40. However, we observed a 35% inhibition of proliferation and a >65% reduction in cytotoxic-T-cell activity, and interleukin 10 production was increased ninefold. These EBV-LCL J1-stimulated T lymphocytes act as antigen-specific regulatory cells, since their addition to fresh autologous T cells cultured with autologous nontransduced EBV-LCL cells significantly inhibited both proliferation and cytotoxic effector function. Within the inhibitory population, CD4(+)CD25(+) and CD8(+)CD25(-) T cells had the greatest activity. This inhibition appears to be antigen-specific, since responses to Candida and cytomegalovirus antigens were unaffected. Hence, transgenic expression of Jagged-1 by antigen-presenting cells can induce antigen-specific regulatory T cells in humans and modify immune responses to viral antigens.  相似文献   
148.
Tissue inhibitors of metalloproteinases (TIMPs) regulate tumor growth, progression, and angiogenesis in a variety of experimental cancer models and in human malignancies. Results from numerous studies have revealed important differences between TIMP family members in their ability to inhibit angiogenic processes in vitro and angiogenesis in vivo despite their universal ability to inhibit matrix metalloproteinase (MMP) activity. To address these differences, a series of structure-function studies were conducted to identify and to characterize the anti-angiogenic domains of TIMP-2, the endogenous MMP inhibitor that uniquely inhibits capillary endothelial cell (EC) proliferation as well as angiogenesis in vivo. We demonstrate that the COOH-terminal domain of TIMP-2 (T2C) inhibits the proliferation of capillary EC at molar concentrations comparable with those previously reported for intact TIMP-2, while the NH2-terminal domain (T2N), which inhibits MMP activity, has no significant anti-proliferative effect. Interestingly, although both T2N and T2C inhibited embryonic angiogenesis, only T2C resulted in the potent inhibition of angiogenesis driven by the exogenous addition of angiogenic mitogen, suggesting that MMP inhibition alone may not be sufficient to inhibit the aggressive neovascularization characteristic of aberrant angiogenesis. We further mapped the anti-proliferative activity of T2C to a 24-amino acid peptide corresponding to Loop 6 of TIMP-2 and show that Loop 6 is a potent inhibitor of both embryonic and mitogen-stimulated angiogenesis in vivo. These findings demonstrate that TIMP-2 possesses two distinct types of anti-angiogenic activities which can be uncoupled from each other, the first represented by its MMP-dependent inhibitory activity which can inhibit only embryonic neovascularization and the second represented by an MMP-independent activity which inhibits both normal angiogenesis and mitogen-driven angiogenesis in vivo. In addition, we report, for the first time, the discovery of Loop 6 as a novel and potent inhibitor of angiogenesis.  相似文献   
149.
Neuritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacterized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIa-mediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.  相似文献   
150.
Cytogenetic monitoring has been traditionally used for the surveillance of populations exposed to genotoxic agents. In recent years sensitivity problems emerged in surveys of populations exposed to low levels of mutagens, and therefore alternative approaches have been explored. Biomonitoring studies in children are a promising field, since because of evident differences in the uptake, metabolism, distribution and excretion of mutagens this population seems to be more susceptible than adults. Further, the effect of major confounders such as cigarettes smoking, occupation, life-style, and dietary factors plays a minor role. Among cytogenetic assays, the micronucleus assay (MN) has several advantages and is increasingly used. A review was then carried out to synthesize the published data on the occurrence of MN in children and adolescents (age range 0-18 years), and to assess the impact of genotoxic exposure on MN frequency. Overall, 20 papers from international literature and 8 Russian papers were included. An effect of age was found within this age range, while the influence of gender on MN frequency was irrelevant. These results were confirmed by the re-analysis of data for 448 children selected from the HUMN database. An effect of chronic and infectious diseases on MN levels has been reported by various authors. Most studies describing the effect of exposure to genotoxic agents (ionizing radiation, chemicals, drugs, environmental tobacco smoke) found an increase of MN in exposed children. The limited number of published papers indicates that the conduct of properly designed studies on the effect of environmental pollutants in children may be difficult. This review confirmed the usefulness of MN assay in biomonitoring studies conducted in children, revealing that in many circumstances investigating children increases the sensitivity of the study, even with low dose exposures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号