首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1131篇
  免费   100篇
  国内免费   1篇
  1232篇
  2024年   2篇
  2023年   6篇
  2022年   16篇
  2021年   42篇
  2020年   15篇
  2019年   22篇
  2018年   29篇
  2017年   28篇
  2016年   52篇
  2015年   82篇
  2014年   83篇
  2013年   84篇
  2012年   132篇
  2011年   105篇
  2010年   69篇
  2009年   48篇
  2008年   67篇
  2007年   59篇
  2006年   54篇
  2005年   37篇
  2004年   51篇
  2003年   38篇
  2002年   33篇
  2001年   7篇
  2000年   2篇
  1999年   9篇
  1998年   10篇
  1997年   5篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有1232条查询结果,搜索用时 0 毫秒
91.
Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased Kd value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R49 that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.  相似文献   
92.
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well‐established non‐centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin‐ and RNA‐binding proteins. In total, we assigned novel centrosome‐related functions to 24 proteins and confirmed 13 of these in human cells.  相似文献   
93.
The cationic antimicrobial immunomodulatory peptide, KLK (KLKL5KLK), exerts profound membrane interacting properties, impacting on ultrastructure and fluidity. KLK–membrane interactions that lead to these alterations require the ability of the peptide to move into an α‐helical conformation. We show that KLK induces an increase of the intracellular Ca2+ concentration in human T24 cells. The effect of KLK is buffer‐sensitive, as it is detected when HBSS buffer is used, but not with PBS. This, together with the lack of effect of the middle leucine‐to‐proline‐substituted peptide derivative [KPK (KLKLLPLLKLK)], indicates that it is the conformational propensity rather than the net positive charge that contributes to the effect of KLK on intracellular Ca2+ level of T24 cells. We show that, although KLK slightly stimulates Ca2+ influx into the cell, the bulk increase of Ca2+ levels is due to KLK‐induced depletion of intracellular Ca2+ stores. Finally, we demonstrate a KLK‐induced switch of PS (phosphatidylserine) from the inner to the outer plasma membrane leaflet that contributes to the onset of early apoptotic changes in these cells.  相似文献   
94.
Most members of the tumor necrosis factor ligand family form noncovalently linked homotrimers, capable to bind up to three molecules of the respective membrane receptors. For several receptors a membrane distal homophilic interaction domain has been identified, called pre-ligand binding assembly domain. Accordingly, affinity values determined by typical equilibrium binding studies are likely to be influenced by avidity effects. Using our recently introduced covalently stabilized TNF (single chain TNF, scTNF), we have here investigated receptor–ligand binding stoichiometry in our well characterized system of TNFR–Fas chimeras. We produced scTNF derivatives with functionally deleted individual receptor binding sites, resulting in TNF mutants capable to only bind to one or two receptor molecules, rather than three. Equilibrium binding affinity studies on ice with these molecules revealed no significant changes after a single receptor binding site had been functionally deleted. In contrast, functional abrogation of two receptor binding sites showed a strong decrease in both, affinity and bioactivity on TNFR2–Fas. In contrast, TNFR1–Fas ligand binding and receptor activation was only affected after functional deletion of all three receptor binding sites. Our data demonstrate pivotal differences in ligand/receptor interactions between TNFR1–Fas and TNFR2–Fas, arguing for avidity effects important for TNF binding and downstream signaling of TNFR2, but to a lesser extent of TNFR1. These results are supported by data revealed from chemical crosslinking experiments suggesting the existence of preformed TNFR–Fas homodimers.  相似文献   
95.
We describe a new device with parallel optical measurement of dissolved oxygen (DO) and pH in up to nine shake flasks applicable in any conventional shaking incubator. Measurement ranges are 0–500% of air saturation for oxygen and 5.5–8.5 for pH. It was used to characterize growth profiles of different l-lysine producing strains of Corynebacterium glutamicum, of Saccharomyces cerevisiae and of Escherichia coli. Cultures in unbaffled flasks were highly reproducible. Oxygen limitation was indicated online which is particularly important when cultivating fast growing cells as E. coli. C. glutamicum strains showed distinct characteristic patterns of DO and pH indicating biological events. During the cultivation of S. cerevisiae on glucose, fructose and galactose, oxygen uptake rate was determined using the predetermined value of k L a. pH measurement was used to determine the minimum buffer requirement for a culture of C. glutamicum.  相似文献   
96.

Background  

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals.  相似文献   
97.
Neurons of the mammalian CNS, including retinal ganglion cells, lack, in contrast to the PNS, the ability to regenerate axons spontaneously after injury. Regeneration of the CNS is extremely complex and involves various molecular factors and cells. Therewith the regenerative process remains an enormous scientific and clinical challenge. This article provides an overview of proteins that play a crucial role in axon regeneration of retinal ganglion cells and their underlying signaling pathways. In this context, we elucidate the role of 2D gel electrophoresis and highlight some additional proteins, altered upon regeneration by using this highly sensitive method.  相似文献   
98.
In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.  相似文献   
99.
Avian extrapair mating systems provide an interesting model to assess the role of genetic benefits in the evolution of female multiple mating behavior, as potentially confounding nongenetic benefits of extrapair mate choice are seen to be of minor importance. Genetic benefit models of extrapair mating behavior predict that females engage in extrapair copulations with males of higher genetic quality compared to their social mates, thereby improving offspring reproductive value. The most straightforward test of such good genes models of extrapair mating implies pairwise comparisons of maternal half-siblings raised in the same environment, which permits direct assessment of paternal genetic effects on offspring traits. But genetic benefits of mate choice may be difficult to detect. Furthermore, the extent of genetic benefits (in terms of increased offspring viability or fecundity) may depend on the environmental context such that the proposed differences between extrapair offspring (EPO) and within-pair offspring (WPO) only appear under comparatively poor environmental conditions. We tested the hypothesis that genetic benefits of female extrapair mate choice are context dependent by analyzing offspring fitness-related traits in the coal tit (Parus ater) in relation to seasonal variation in environmental conditions. Paternal genetic effects on offspring fitness were context dependent, as shown by a significant interaction effect of differential paternal genetic contribution and offspring hatching date. EPO showed a higher local recruitment probability than their maternal half-siblings if born comparatively late in the season (i.e., when overall performance had significantly declined), while WPO performed better early in the season. The same general pattern of context dependence was evident when using the number of grandchildren born to a cuckolding female via her female WPO or EPO progeny as the respective fitness measure. However, we were unable to demonstrate that cuckolding females obtained a general genetic fitness benefit from extrapair fertilizations in terms of offspring viability or fecundity. Thus, another type of benefit could be responsible for maintaining female extrapair mating preferences in the study population. Our results suggest that more than a single selective pressure may have shaped the evolution of female extrapair mating behavior in socially monogamous passerines.  相似文献   
100.
Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX), and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号