首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   37篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2016年   7篇
  2015年   17篇
  2014年   14篇
  2013年   20篇
  2012年   31篇
  2011年   31篇
  2010年   19篇
  2009年   13篇
  2008年   21篇
  2007年   19篇
  2006年   19篇
  2005年   19篇
  2004年   30篇
  2003年   19篇
  2002年   13篇
  2001年   6篇
  2000年   4篇
  1999年   9篇
  1998年   9篇
  1997年   1篇
  1996年   4篇
  1995年   9篇
  1994年   3篇
  1993年   2篇
  1992年   10篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1972年   2篇
  1970年   3篇
排序方式: 共有423条查询结果,搜索用时 31 毫秒
91.
Protein tyrosine kinase blockers of the tyrphostin family inhibited the EGF-dependent proliferation of human and guinea pig keratinocytes grown in culture and induced their growth arrest. These blockers also significantly inhibited the growth of epidermal keratinocytes, but not of dermal cells, in whole skin organ culture from both guinea pig and human origin. The antiproliferative activity of these tyrphostins correlated quantitatively with their potency as inhibitors of EGF receptor autophosphorylation and the EGF-dependent protein phosphorylation of intracellular target proteins in the keratinocyte. Furthermore, no significant cell cytotoxicity or reduction in serine and threonine phosphorylation of many intracellular polypeptides were observed upon incubation of the cells with tyrphostins like AG213. The complete growth arrest induced by the tyrphostins is fully reversible and upon their removal the keratinocytes resumed their growth with the original growth rate. Because of the nontoxic nature of these compounds and their growth-arresting properties, we suggest their use as agents to treat hyperproliferative conditions of human skin.  相似文献   
92.
93.
94.
ExoQuick-TCTM (EQ), a chemical-based agent designed to precipitate exosomes, was calibrated for use on saliva collected from healthy individuals. The morphological and molecular features of the precipitations were compared with those obtained using the classical, physical-based method of ultracentrifugation (UC). Electron microscopy and immunoelectron microscopy with anti-CD63 showed vesicular nanoparticles surrounded by bi-layered membrane, compatible with exosomes in EQ, similar to that observed with UC. Atomic force microscopy highlighted larger, irregularly shaped/aggregated EQ nanoparticles that contrasted with the single, round-shaped UC nanoparticles. ELISA (performed on 0.5 ml of saliva) revealed a tendency for a higher expression of the specific exosomal markers (CD63, CD9, CD81) in EQ than in UC (p>0.05). ELISA for epithelial growth factor receptor, a non-exosomal-related marker, showed a significantly higher concentration in EQ than in UC (p=0.04). Western blotting of equal total-protein concentrations revealed bands of CD63, CD9 and CD81 in both types of preparations, although they were less pronounced in EQ compared with UC. This may be related to a higher fraction of non-exosomal proteins in EQ. In conclusion, EQ is suitable and efficient for precipitation of salivary exosomes from small volumes of saliva; however, EQ tends to be associated with considerably more biological impurities (non-exosomal-related proteins/microvesicles) as compared with UC.  相似文献   
95.
96.
The genetic basis of odorant-specific variations in human olfactory thresholds, and in particular of enhanced odorant sensitivity (hyperosmia), remains largely unknown. Olfactory receptor (OR) segregating pseudogenes, displaying both functional and nonfunctional alleles in humans, are excellent candidates to underlie these differences in olfactory sensitivity. To explore this hypothesis, we examined the association between olfactory detection threshold phenotypes of four odorants and segregating pseudogene genotypes of 43 ORs genome-wide. A strong association signal was observed between the single nucleotide polymorphism variants in OR11H7P and sensitivity to the odorant isovaleric acid. This association was largely due to the low frequency of homozygous pseudogenized genotype in individuals with specific hyperosmia to this odorant, implying a possible functional role of OR11H7P in isovaleric acid detection. This predicted receptor–ligand functional relationship was further verified using the Xenopus oocyte expression system, whereby the intact allele of OR11H7P exhibited a response to isovaleric acid. Notably, we also uncovered another mechanism affecting general olfactory acuity that manifested as a significant inter-odorant threshold concordance, resulting in an overrepresentation of individuals who were hyperosmic to several odorants. An involvement of polymorphisms in other downstream transduction genes is one possible explanation for this observation. Thus, human hyperosmia to isovaleric acid is a complex trait, contributed to by both receptor and other mechanisms in the olfactory signaling pathway.  相似文献   
97.
Interactions mediated by short linear motifs in proteins play major roles in regulation of cellular homeostasis since their transient nature allows for easy modulation. We are still far from a full understanding and appreciation of the complex regulation patterns that can be, and are, achieved by this type of interaction. The fact that many linear-motif-binding domains occur in tandem repeats in proteins indicates that their mutual communication is used extensively to obtain complex integration of information toward regulatory decisions. This review is an attempt to overview, and classify, different ways by which two and more tandem repeats cooperate in binding to their targets, in the well-characterized family of WW domains and their corresponding polyproline ligands.  相似文献   
98.
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.  相似文献   
99.
Potato (Solanum tuberosum) tuber, a swollen underground stem, is used as a model system for the study of dormancy release and sprouting. Natural dormancy release, at room temperature, is initiated by tuber apical bud meristem (TAB-meristem) sprouting characterized by apical dominance (AD). Dormancy is shortened by treatments such as bromoethane (BE), which mimics the phenotype of dormancy release in cold storage by inducing early sprouting of several buds simultaneously. We studied the mechanisms governing TAB-meristem dominance release. TAB-meristem decapitation resulted in the development of increasing numbers of axillary buds with time in storage, suggesting the need for autonomous dormancy release of each bud prior to control by the apical bud. Hallmarks of programmed cell death (PCD) were identified in the TAB-meristems during normal growth, and these were more extensive when AD was lost following either extended cold storage or BE treatment. Hallmarks included DNA fragmentation, induced gene expression of vacuolar processing enzyme1 (VPE1), and elevated VPE activity. VPE1 protein was semipurified from BE-treated apical buds, and its endogenous activity was fully inhibited by a cysteinyl aspartate-specific protease-1-specific inhibitor N-Acetyl-Tyr-Val-Ala-Asp-CHO (Ac-YVAD-CHO). Transmission electron microscopy further revealed PCD-related structural alterations in the TAB-meristem of BE-treated tubers: a knob-like body in the vacuole, development of cytoplasmic vesicles, and budding-like nuclear segmentations. Treatment of tubers with BE and then VPE inhibitor induced faster growth and recovered AD in detached and nondetached apical buds, respectively. We hypothesize that PCD occurrence is associated with the weakening of tuber AD, allowing early sprouting of mature lateral buds.  相似文献   
100.
Amyloid formation is associated with several human diseases including Alzheimer's disease (AD), Parkinson's disease, Type 2 Diabetes, and so forth, no disease modifying therapeutics are available for them. Because of the structural similarities between the amyloid species characterizing these diseases, (despite the lack of amino acid homology) it is believed that there might be a common mechanism of toxicity for these conditions. Thus, inhibition of amyloid formation could be a promising disease-modifying therapeutic strategy for them. Aromatic residues have been identified as crucial in formation and stabilization of amyloid structures. This finding was corroborated by high-resolution structural studies, theoretical analysis, and molecular dynamics simulations. Amongst the aromatic entities, tryptophan was found to possess the most amyloidogenic potential. We therefore postulate that targeting aromatic recognition interfaces by tryptophan could be a useful approach for inhibiting the formation of amyloids. Quinones are known as inhibitors of cellular metabolic pathways, to have anti- cancer, anti-viral and anti-bacterial properties and were shown to inhibit aggregation of several amyloidogenic proteins in vitro. We have previously described two quinone-tryptophan hybrids which are capable of inhibiting amyloid-beta, the protein associated with AD pathology, both in vitro and in vivo. Here we tested their generic properties and their ability to inhibit other amyloidogenic proteins including α-synuclein, islet amyloid polypeptide, lysozyme, calcitonin, and insulin. Both compounds showed efficient inhibition of all five proteins examined both by ThT fluorescence analysis and by electron microscope imaging. If verified in vivo, these small molecules could serve as leads for developing generic anti-amyloid drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号