首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7836篇
  免费   542篇
  国内免费   3篇
  2023年   41篇
  2022年   87篇
  2021年   185篇
  2020年   110篇
  2019年   130篇
  2018年   178篇
  2017年   192篇
  2016年   271篇
  2015年   425篇
  2014年   439篇
  2013年   534篇
  2012年   636篇
  2011年   538篇
  2010年   362篇
  2009年   323篇
  2008年   408篇
  2007年   445篇
  2006年   388篇
  2005年   366篇
  2004年   346篇
  2003年   328篇
  2002年   301篇
  2001年   88篇
  2000年   58篇
  1999年   91篇
  1998年   86篇
  1997年   63篇
  1996年   56篇
  1995年   62篇
  1994年   56篇
  1993年   57篇
  1992年   50篇
  1991年   53篇
  1990年   55篇
  1989年   33篇
  1988年   37篇
  1987年   21篇
  1986年   31篇
  1985年   30篇
  1984年   32篇
  1983年   20篇
  1982年   29篇
  1981年   25篇
  1980年   16篇
  1979年   20篇
  1978年   15篇
  1977年   16篇
  1976年   21篇
  1974年   22篇
  1970年   16篇
排序方式: 共有8381条查询结果,搜索用时 593 毫秒
191.
Progressive supranuclear palsy (PSP) and frontotemporal lobar degeneration (FTD) are two clinicohistological entities that share a severe prefrontal syndrome. To what extent do the cognitive syndrome and the location of the underlying brain atrophy unify or segregate these entities? Here, we examined the clinical and radiological patterns of frontal involvement and the neural bases of the cognitive dysfunctions observed in the Richardson form of PSP and the behavioral variant of FTD (bvFTD). The cognitive profile and grey and white matter volume of PSP (n = 19) and bvFTD (n = 16) patients and control participants (n = 18) were compared using a standard battery of neuropsychological tests and voxel-based morphometry (VBM), respectively. Analyses of correlations between neuropsychological and morphometric data were additionally performed. The severity and qualitative pattern of cognitive dysfunction was globally similar between the two patient groups. Grey matter volume was decreased in widespread frontal areas and in the temporal uncus in bvFTD, while it was decreased in the frontal and temporal lobes as well as in the thalamus in PSP. We also found an unexpected involvement of the frontal rectal gyrus in PSP patients compared to controls. Correlation analyses yielded different results in the two groups, with no area showing significant correlations in PSP patients, while several frontal and some temporal areas did so in bvFTD patients. In spite of minor neuropsychological and morphological differences, this study shows that the patterns of cognitive dysfunction and atrophy are very similar in PSP and bvFTD. However, executive dysfunction in these diseases may stem from partially divergent cortical and subcortical neural circuits.  相似文献   
192.
193.
194.
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4+ T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. The CD39 ectonucleotidase receptor is expressed on CD4+ T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39+CD25+) and effector (CD39+CD25) function. Here, we investigated the expression of CD39 on CD4+ T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. The frequency of CD39+ CD4+ T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39+CD25 CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39+CD25+ regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39CD25+ T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4+ T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4+ T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.  相似文献   
195.
Wildlife populations are subjected to increasing pressure linked to human activities, which introduce multiple stressors. Recently, in addition to direct effects, it has been shown that indirect (non-lethal) effects of predation risk are predominant in many populations. Predation risk is often structured in space and time, generating a heterogeneous “landscape of fear” within which animals can minimize risks by modifying their habitat use. Furthermore, for ungulates, resource quality seems to be positively correlated with human-related sources of risk. We studied the trade-off between access to resources of high-quality and risk-taking by contrasting habitat use of roe deer during daytime with that during nighttime for 94 roe deer in a hunted population. Our first hypothesis was that roe deer should avoid human disturbance by modifying their habitat use during daytime compared to nighttime. Our results supported this, as roe deer mainly used open fields during nighttime, but used more forested habitats during daytime, when human disturbance is higher. Moreover, we found that diel patterns in habitat use were influenced by hunting disturbance. Indeed, the roe deer decreased their use of high-crops during daytime, an important source of cover and food, during the hunting season. The proximity of roads and dwellings also affected habitat use, since roe deer used open fields during daytime to a greater extent when the distance to these sources of disturbance was higher. Hence, our results suggest that roe deer resolve the trade-off between the acquisition of high-quality resources and risk avoidance by modifying their habitat use between day and night.  相似文献   
196.
Highlights? Derepression of HIF-2α mRNA in Irp1?/? mice causes age-dependent polycythemia ? HIF-2α hyperactivity is observed in multiple tissues of Irp1?/? mice ? The mRNA regulons of IRP1 and IRP2 are separable in vivo ? The IRP1-HIF-2α axis is a therapeutic target for hematologic or oncologic disorders  相似文献   
197.
Cellular decision-making is driven by dynamic behaviours, such as the preparations for sunrise enabled by circadian rhythms and the choice of cell fates enabled by positive feedback. Such behaviours are often built upon ultrasensitive responses where a linear change in input generates a sigmoidal change in output. Phosphorylation-dephosphorylation cycles are one means to generate ultrasensitivity. Using bioinformatics, we show that in vivo levels of kinases and phosphatases frequently exceed the levels of their corresponding substrates in budding yeast. This result is in contrast to the conditions often required by zero-order ultrasensitivity, perhaps the most well known means for how such cycles become ultrasensitive. We therefore introduce a mechanism to generate ultrasensitivity when numbers of enzymes are higher than numbers of substrates. Our model combines distributive and non-distributive actions of the enzymes with two-stage binding and concerted allosteric transitions of the substrate. We use analytical and numerical methods to calculate the Hill number of the response. For a substrate with phosphosites, we find an upper bound of the Hill number of , and so even systems with a single phosphosite can be ultrasensitive. Two-stage binding, where an enzyme must first bind to a binding site on the substrate before it can access the substrate''s phosphosites, allows the enzymes to sequester the substrate. Such sequestration combined with competition for each phosphosite provides an intuitive explanation for the sigmoidal shifts in levels of phosphorylated substrate. Additionally, we find cases for which the response is not monotonic, but shows instead a peak at intermediate levels of input. Given its generality, we expect the mechanism described by our model to often underlay decision-making circuits in eukaryotic cells.

Authors Summary

Dose-response curves are said to be ultrasensitive when they are sigmoidal rather than hyperbolic and often underlay cellular decision-making circuits. Zero-order ultrasensitivity is a well-known mechanism to generate sigmoidal curves in phosphorylation cycles, but one of its assumptions often implies that the substrate is more abundant than the modifying enzymes. We show that this assumption is unlikely to always hold in vivo, and we present a general model that generates ultrasensitivity when the enzymes are in excess of their substrate. The model combines conformational allosteric transitions of the substrate with two-stage binding of the enzymes: the enzymes bind first to a docking site on the substrate and then to the substrate''s phosphosites. Ultrasensitivity is generated because the kinase can bind to the fully phosphorylated form of the substrate (at its docking site) and sequester the substrate away from the phosphatase and, similarly, the phosphatase can bind to the fully dephosphorylated form of the substrate and sequester the substrate away from the kinase. The number of kinase-phosphatase competitions for the substrate determines the degree of ultrasensitivity. Finally, we show that this model can generate non-monotonic responses that peak at intermediate levels of input.  相似文献   
198.
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号