首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   11篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   9篇
  2013年   5篇
  2012年   11篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有121条查询结果,搜索用时 734 毫秒
111.
In the COVID-19 pandemic, workplace transmission plays an important role. For this type of transmission, the longitudinal 14-day incidence curve of SARS-CoV-2 infections per economic sector is a proxy. In Belgium, a census of confirmed 14-day incidences per NACE-BEL sector level three is available from September 2020 until June 2021, encompassing two waves of infections. However, these high-dimensional data, with a relatively small number of NACE-BEL sectors, are challenging to analyze. We propose a nonlinear Gaussian–Gaussian model that combines parametric and semi-parametric elements to describe the incidence curves with a small set of meaningful parameters. These parameters are further analyzed with conventional statistical methods, such as CCA and linear models, to provide insight into predictive characteristics of the first wave for the second wave. Those nonlinear models classify economic sectors into three groups: sectors with two regular waves of infections, sectors with only a first wave and sectors with a more irregular profile, which may indicate a clear effect of COVID-19 vaccination. The Gaussian–Gaussian model thus allows for analyzing and comparing incidence curves and to bring out key characteristics of such curves. Finally, we consider in which other settings the proposed approach could be applied, together with possible pitfalls.  相似文献   
112.
Chemoreceptor cells in the vomeronasal and olfactory epithelium are replaced following experimentally induced degeneration. This study analyzes quantitatively the time course and degree of vomeronasal receptor cell replacement. Unilateral transection of the vomeronasal nerves in adult hamster was used to induce a retrograde degeneration of receptor cells in the vomeronasal organ. Histological measurement of both number of receptor cells and epithelial thickness were made for recovery times from 0 to 60 days. After nerve transection, there was a gradual degeneration of receptor cells, the number decreasing to 50% of control by day 2 and 16% by day 6. During days 7-15 maximum receptor cell replacement was observed. Cell number increased rapidly and reached a peak on day 15. At recovery times of 40-60 days, cell number returned to the control level. Epithelial thickness, however, decreased to 60-70% during the degeneration period (days 4-6) and did not return to control levels. After 40-60 days epithelial thickness remained at 70% of control. These results demonstrate that vomeronasal receptor cells are replaced following degeneration, but epithelial thickness does not return to control levels. These findings suggest that the number of replacement cells is not limited by the reduced thickness of the epithelium, and that recovery mechanisms may function to restore an optimum number of receptor cells.   相似文献   
113.
114.
115.
The Corona Virus Disease (COVID-19) pandemic has increased mortality in countries worldwide. To evaluate the impact of the pandemic on mortality, the use of excess mortality rather than reported COVID-19 deaths has been suggested. Excess mortality, however, requires estimation of mortality under nonpandemic conditions. Although many methods exist to forecast mortality, they are either complex to apply, require many sources of information, ignore serial correlation, and/or are influenced by historical excess mortality. We propose a linear mixed model that is easy to apply, requires only historical mortality data, allows for serial correlation, and down-weighs the influence of historical excess mortality. Appropriateness of the linear mixed model is evaluated with fit statistics and forecasting accuracy measures for Belgium and the Netherlands. Unlike the commonly used 5-year weekly average, the linear mixed model is forecasting the year-specific mortality, and as a result improves the estimation of excess mortality for Belgium and the Netherlands.  相似文献   
116.
117.
Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale‐independent metric called “box dimension.” This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.  相似文献   
118.
The method of generalized pairwise comparisons (GPC) is an extension of the well-known nonparametric Wilcoxon–Mann–Whitney test for comparing two groups of observations. Multiple generalizations of Wilcoxon–Mann–Whitney test and other GPC methods have been proposed over the years to handle censored data. These methods apply different approaches to handling loss of information due to censoring: ignoring noninformative pairwise comparisons due to censoring (Gehan, Harrell, and Buyse); imputation using estimates of the survival distribution (Efron, Péron, and Latta); or inverse probability of censoring weighting (IPCW, Datta and Dong). Based on the GPC statistic, a measure of treatment effect, the “net benefit,” can be defined. It quantifies the difference between the probabilities that a randomly selected individual from one group is doing better than an individual from the other group. This paper aims at evaluating GPC methods for censored data, both in the context of hypothesis testing and estimation, and providing recommendations related to their choice in various situations. The methods that ignore uninformative pairs have comparable power to more complex and computationally demanding methods in situations of low censoring, and are slightly superior for high proportions (>40%) of censoring. If one is interested in estimation of the net benefit, Harrell's c index is an unbiased estimator if the proportional hazards assumption holds. Otherwise, the imputation (Efron or Peron) or IPCW (Datta, Dong) methods provide unbiased estimators in case of proportions of drop-out censoring up to 60%.  相似文献   
119.
Forest biogeochemistry is strongly determined by the interaction between the tree community and the topsoil. Functional strategies of tree species are coupled to specific chemical leaf traits, and thus also to litter composition, which affects mineral soil characteristics. The limited understanding on this interaction is mainly based on shorter-term common garden experiments in temperate forest, and needs to be extended to other forest types and climates if we want to understand the universality of this linkage. In particular, for highly diverse tropical forests, our understanding of this interaction remains limited. Using an old experimental plantation within the central Congo basin, we examined the relationship between leaf and litter chemical composition and topsoil properties. Canopy, litter and topsoil characteristics were measured and we determined how the community-level leaf and litter chemical composition altered the topsoil carbon, major plant nutrients and exchangeable cation concentration, acidity and pH over the last eight decades. We found that functional composition strongly affected topsoil pH. In turn, topsoil pH strongly determined the soil total carbon and available phosphorus, total nitrogen and exchangeable potassium. Our results indicate that, as observed in temperate common garden experiments, trees alter chemical topsoil properties primarily through soil acidification, differently induced by functional composition of the tree community. The strong link between this community-level composition and topsoil characteristics, on a highly representative soil type for the tropics, improves our understanding of tropical forests biogeochemistry.  相似文献   
120.
1. Literature data about the plasma content of total calcium, ionized calcium and inorganic phosphate in healthy animals and man of different age and sex were collected. 2. It was established that under normal conditions ionized calcium is about 45% of total calcium. 3. The degree of saturation of these blood samples with respect to octocalcium phosphate OCP was calculated. 4. In young animals and man the blood plasma has a higher degree of saturation than in adult animals and man. 5. The blood plasma of healthy animals is supersaturated with respect to OCP during their whole life. 6. However, the blood plasma of healthy human adults is slightly undersaturated with respect to OCP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号