首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3286篇
  免费   225篇
  国内免费   3篇
  3514篇
  2023年   21篇
  2022年   32篇
  2021年   67篇
  2020年   30篇
  2019年   52篇
  2018年   58篇
  2017年   55篇
  2016年   119篇
  2015年   181篇
  2014年   198篇
  2013年   241篇
  2012年   304篇
  2011年   264篇
  2010年   131篇
  2009年   119篇
  2008年   195篇
  2007年   215篇
  2006年   169篇
  2005年   166篇
  2004年   142篇
  2003年   128篇
  2002年   122篇
  2001年   36篇
  2000年   28篇
  1999年   34篇
  1998年   23篇
  1997年   24篇
  1996年   25篇
  1995年   22篇
  1994年   19篇
  1993年   24篇
  1992年   21篇
  1991年   14篇
  1990年   10篇
  1989年   16篇
  1988年   18篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   19篇
  1983年   10篇
  1982年   17篇
  1981年   8篇
  1979年   12篇
  1978年   8篇
  1977年   8篇
  1974年   14篇
  1971年   6篇
  1964年   6篇
  1952年   4篇
排序方式: 共有3514条查询结果,搜索用时 9 毫秒
51.
52.
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E1 osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair.  相似文献   
53.
Zaprionus indianus is a recent invader in Brazil and was probably introduced from the West Afrotropical zone. So far, studies regarding its chromosomal polymorphism were limited to India. We found that Brazilian populations were very different from Indian ones. Five new inversions have been discovered. In(II)A, already described in India, where it is quite common, has also been found in Brazil, where it is very rare. The X-chromosome has three inversions; In(X)Na, In(X)Ke and In(X)Eg, which are frequent in all Brazilian populations studied. In every case, we observed strong linkage disequilibrium among these gene arrangements. During the primary collection period (2001–2002), we noticed a significant positive correlation between the frequency of these inversions and latitude, but this was not confirmed in later investigations. Rearrangement In(IV)EF was also common in all populations, while inversion In(V)B was only found in southern populations. Our data suggest that the founders that recently invaded Brazil were polymorphic for the six inversions observed. The place of origin might be identified more precisely by investigating West African populations. In order to facilitate further investigations, we present an updated polytene chromosome photomap, locating the breakpoints of every inversion observed in Brazilian populations. Galina Ananina and Cláudia Rohde contributed equally to this work  相似文献   
54.
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12:12 light-dark (LD) conditions with two different light intensities (58.6 and 1091 microW/cm2), and the effect of I h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1091.4 microW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12:12 and high light conditions displayed rhythmic variation, where values at MD (255.8 +/- 65.9 pg/ml) were higher than at midlight (ML) (70.7 +/- 31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12: 12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6 +/- 3.2 pg/ml (in the 3.3-10.5 microW/cm2 range) and to 61.8 +/- 18.3 pg/ml (with the 1091.4 microW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).  相似文献   
55.
Lipid droplets (LDs) were once viewed as simple, inert lipid micelles. However, they are now known to be organelles with a rich proteome involved in a myriad of cellular processes. LDs are heterogeneous in nature with different sizes and compositions of phospholipids, neutral lipids and proteins. This review takes a focused look at the roles of proteins involved in the regulation of LD formation, expansion, and morphology. The related proteins are summarized such as the fat-specific protein (Fsp27), fat storage-inducing trans- membrane (FIT) proteins, seipin and ADP-ribosylation factor 1-coat protein complex I (Arf-COPI). Finally, we present important challenges in LD biology for a deeper understanding of this dynamic organelle to be achieved.  相似文献   
56.
57.
NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus‐infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV‐1‐infected cells. By combining an unbiased large‐scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV‐1‐infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor‐mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL‐mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL‐mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti‐HIV‐1 activity of NK cells but also possesses a multifunctional role beyond receptor‐mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.  相似文献   
58.
59.
60.
Esophageal squamous cell carcinoma (ESCC), the most frequent esophageal cancer (EC) subtype, entails dismal prognosis. Hypoxia, a common feature of advanced ESCC, is involved in resistance to radiotherapy (RT). RT response in hypoxia might be modulated through epigenetic mechanisms, constituting novel targets to improve patient outcome. Post-translational methylation in histone can be partially modulated by histone lysine demethylases (KDMs), which specifically removes methyl groups in certain lysine residues. KDMs deregulation was associated with tumor aggressiveness and therapy failure. Thus, we sought to unveil the role of Jumonji C domain histone lysine demethylases (JmjC-KDMs) in ESCC radioresistance acquisition. The effectiveness of RT upon ESCC cells under hypoxic conditions was assessed by colony formation assay. KDM3A/KDM6B expression, and respective H3K9me2 and H3K27me3 target marks, were evaluated by RT-qPCR, Western blot, and immunofluorescence. Effect of JmjC-KDM inhibitor IOX1, as well as KDM3A knockdown, in in vitro functional cell behavior and RT response was assessed in ESCC under hypoxic conditions. In vivo effect of combined IOX1 and ionizing radiation treatment was evaluated in ESCC cells using CAM assay. KDM3A, KDM6B, HIF-1α, and CAIX immunoexpression was assessed in primary ESCC and normal esophagus. Herein, we found that hypoxia promoted ESCC radioresistance through increased KDM3A/KDM6B expression, enhancing cell survival and migration and decreasing DNA damage and apoptosis, in vitro. Exposure to IOX1 reverted these features, increasing ESCC radiosensitivity and decreasing ESCC microtumors size, in vivo. KDM3A was upregulated in ESCC tissues compared to the normal esophagus, associating and colocalizing with hypoxic markers (HIF-1α and CAIX). Therefore, KDM3A upregulation in ESCC cell lines and primary tumors associated with hypoxia, playing a critical role in EC aggressiveness and radioresistance. KDM3A targeting, concomitant with conventional RT, constitutes a promising strategy to improve ESCC patients’ survival.Subject terms: Predictive markers, Cancer  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号