首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3689篇
  免费   261篇
  国内免费   3篇
  3953篇
  2023年   22篇
  2022年   34篇
  2021年   68篇
  2020年   31篇
  2019年   55篇
  2018年   62篇
  2017年   60篇
  2016年   126篇
  2015年   198篇
  2014年   206篇
  2013年   258篇
  2012年   326篇
  2011年   277篇
  2010年   138篇
  2009年   130篇
  2008年   212篇
  2007年   232篇
  2006年   184篇
  2005年   185篇
  2004年   163篇
  2003年   155篇
  2002年   148篇
  2001年   58篇
  2000年   51篇
  1999年   44篇
  1998年   33篇
  1997年   30篇
  1996年   29篇
  1995年   25篇
  1994年   22篇
  1993年   26篇
  1992年   27篇
  1991年   22篇
  1990年   23篇
  1989年   27篇
  1988年   21篇
  1987年   14篇
  1986年   17篇
  1985年   11篇
  1984年   24篇
  1983年   13篇
  1982年   22篇
  1981年   9篇
  1979年   20篇
  1978年   10篇
  1977年   8篇
  1974年   16篇
  1971年   6篇
  1966年   7篇
  1964年   6篇
排序方式: 共有3953条查询结果,搜索用时 15 毫秒
991.
992.
993.
The DNA cleavage activity of several β-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate, VIVO(acac)2, 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes VIVO(hd)2 (2, Hhd = 3,5-heptanedione), VIVO(acac-NH2)2 (3, Hacac-NH2 = acetoacetamide) and VIVO(acac-NMe2)2 (4, Hacac-NMe2 = N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 12 ? 34. The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes, mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.  相似文献   
994.

Background

To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE) of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes.

Methodology/Principal Findings

Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively.

Conclusion/Significance

This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were transcribed in infected but not sequestered erythrocytes.  相似文献   
995.

Background

Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays.

Methods

Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression.

Findings

PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent.

Conclusions

The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.  相似文献   
996.
997.
The Wnt/β‐catenin signaling pathway has been increasingly implicated in liver development and physiology. Aberrant activation of this pathway is one of the major genetic events observed during the process of human HCC development. To gain insight into the mechanism underlying β‐catenin action in the liver, we conducted a quantitative differential proteomic analysis using 2‐D DIGE combined with MS, in mice with liver‐specific deletion of Apc resulting in acute activation of β‐catenin signaling (ApcKOliv mice). We identified 94 protein spots showing differential expression between mutant ApcKOliv and control mice, corresponding to 56 individual proteins. Most of the proteins identified were associated with metabolic pathways, such as ammonia and glucose metabolism. Our analysis showed an increase in lactate dehydrogenase activity together with a downregulation of two mitochondrial ATPase subunits (ATP5a1 and ATP5b). These observations indicate that β‐catenin signaling may induce a shift in the glucose metabolism from oxidative phosphorylation to glycolysis, known as the “Warburg effect”. Imaging with 18F‐fluoro‐2‐deoxy‐D ‐glucose‐positron emission tomography suggests that the specific metabolic reprogramming induced by β‐catenin in the liver does not imply the first step of glycolysis. This observation may explain why some HCCs are difficult to assess by fluoro‐2‐deoxy‐D ‐glucose‐positron emission tomography imaging.  相似文献   
998.
The aim of this study is to test the hypothesis that the early changes in lung mechanics and the amount of type III collagen fiber do not predict the evolution of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury (ALI). For this purpose, we analyzed the time course of lung parenchyma remodeling in murine models of pulmonary and extrapulmonary ALI with similar degrees of mechanical compromise at the early phase of ALI. Lung histology (light and electron microscopy), the amount of elastic and collagen fibers in the alveolar septa, the expression of matrix metalloproteinase-9, and mechanical parameters (lung-resistive and viscoelastic pressures, and static elastance) were analyzed 24 h, 1, 3, and 8 wk after the induction of lung injury. In control (C) pulmonary (p) and extrapulmonary (exp) groups, saline was intratracheally (it; 0.05 ml) instilled and intraperitoneally (ip; 0.5 ml) injected, respectively. In ALIp and ALIexp groups, mice received Escherichia coli lipopolysaccharide (10 microg it and 125 microg ip, respectively). At 24 h, all mechanical and morphometrical parameters, as well as type III collagen fiber content, increased similarly in ALIp and ALIexp groups. In ALIexp, all mechanical and histological data returned to control values at 1 wk. However, in ALIp, static elastance returned to control values at 3 wk, whereas resistive and viscoelastic pressures, as well as type III collagen fibers and elastin, remained elevated until week 8. ALIp showed higher expression of matrix metalloproteinase-9 than ALIexp. In conclusion, insult in pulmonary epithelium yielded fibroelastogenesis, whereas mice with ALI induced by endothelial lesion developed only fibrosis that was repaired early in the course of lung injury. Furthermore, early functional and morphological changes did not predict lung parenchyma remodeling.  相似文献   
999.
The self-complementary oligonucleotide CGCATATATGCG was used as a model to establish the binding interactions of antitumor molybdenocene dichloride and DNA. The free dodecamer was first characterized using 1H, NOESY, and DQF-COSY NMR experiments, which enable to pinpoint the guanines and adenines as well as the cytosines and thymines signals in the aromatic region. Molybdenocene dichloride was characterized in saline and buffer solutions as function of pH by 1H NMR spectroscopy. In 10 mM NaCl/D2O solution at pH of 6.5 and above, Cp2Mo(OD)(D2O)+ is in equilibrium with its dimeric species, [Cp2Mo(μ-OH)2MoCp2]2+. In 25 mM Tris/4 mM NaCl/D2O at physiological pH, a new stable species is formed, coordinated by the buffer, Tris(hydroxymethyl)aminomethane. The interactions of molybdenocene dichloride species with CGCATATATGCG were studied at different pH. At pH 6.5, in 4 mM NaCl/D2O solution, 1H NMR spectra of CGCATATATGCG exhibit downfield shifts in the signals associated mainly to adenines and guanines, upon addition of molybdenocene dichloride. At pH 7.4, in 25 mM Tris/4 mM NaCl/D2O, molybdenocene species causes broadening and small downfield shifts to the purines and pyrimidine signals, suggesting that molybdenocene dichloride can get engaged in binding interactions with the oligonucleotide in a weak manner. 31P NMR spectra of these interactions at pH 7.4 showed no changes associated to Mo(IV)-OP coordination, indicating that molybdenocene–oligonucleotide binding interactions are centered, most likely, on the bases. Cyclic voltammetry titration showed a 4.9% of molybdenocene–oligonucleotide interaction. This implicates that possible binding interactions with DNA are weak.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号