首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45309篇
  免费   2759篇
  国内免费   6篇
  2023年   269篇
  2022年   305篇
  2021年   669篇
  2020年   593篇
  2019年   600篇
  2018年   1381篇
  2017年   1181篇
  2016年   1638篇
  2015年   2194篇
  2014年   2239篇
  2013年   2912篇
  2012年   3406篇
  2011年   3068篇
  2010年   1939篇
  2009年   1486篇
  2008年   2279篇
  2007年   2261篇
  2006年   2222篇
  2005年   1820篇
  2004年   1810篇
  2003年   1616篇
  2002年   1529篇
  2001年   1123篇
  2000年   1058篇
  1999年   839篇
  1998年   331篇
  1997年   225篇
  1996年   231篇
  1995年   239篇
  1994年   175篇
  1992年   475篇
  1991年   420篇
  1990年   389篇
  1989年   377篇
  1988年   337篇
  1987年   332篇
  1986年   305篇
  1985年   297篇
  1984年   238篇
  1983年   212篇
  1982年   172篇
  1979年   255篇
  1978年   156篇
  1974年   182篇
  1973年   174篇
  1972年   167篇
  1971年   154篇
  1970年   164篇
  1969年   162篇
  1968年   159篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
11.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
12.
13.
Flow cytometer measurements were made of the basal variations in peripheral blood functional monocytes and granulocytes over the course of a training season (January to November) of a cycling team. Parallel determinations were made of plasma concentration of catecholamines (chromatography) and cortisol (RIA) in a search for neuroendocrine markers. The results showed the greatest phagocytic capacity to occur in the central months (March, May, and July), coinciding with the greatest number and highest level of competitive events with good correlation with a peak in epinephrine during these months (r(2) = 0.998 for monocytes and r(2) = 0.674 for granulocytes). No good correlations were found between phagocytosis and norepinephrine or cortisol. The highest values for phagocytosis and epinephrine concentration were found in May. These results suggest that blood epinephrine concentration could be a good neuroendocrine marker of sportspeople's phagocytic response.  相似文献   
14.
We sampled macroinvertebrates at 75 locations in the Mondego river catchment, Central Portugal, and developed a predictive model for water quality assessment of this basin, based on the Reference Condition Approach. Sampling was done from June to September 2001. Fifty-five sites were identified as “Reference sites” and 20 sites were used as “Test sites” to test the model. At each site we also measured 40 habitat variables to characterize water physics and chemistry, habitat type, land use, stream hydrology and geographic location. Macroinvertebrates were generally identified to species or genus level; a total of 207 taxa were found. By Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering and analysis of species contribution to similarities percentage (SIMPER), two groups of reference sites were established. Using Discriminant Analysis (stepwise forward), four variables correctly predicted 78% of the reference sites to the appropriate group: stream order, pool quality, substrate quality and current velocity. Test sites’ environmental quality was established from their relative distance to reference sites, in MDS ordination space, using a series of bands (BEAST methodology). The model performed well at upstream sites, but at downstream sites it was compromised by the lack of reference sites. As with the English RIVPACS predictive model, the Mondego model should be continually improved with the addition of new reference sites. The adaptation of the Mondego model methodology to the Water Framework Directive is possible and would consist mainly of the integration of the WFD typology and increasing the number of ellipses that define quality bands. Handling editor: K. Martens  相似文献   
15.
16.
When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a developmental program that ensures survival. The YakA protein kinase governs this transition by regulating the cell cycle, repressing growth-phase genes and inducing developmental genes. YakA mutants have a shortened cell cycle and do not initiate development. A suppressor of yakA that reverses most of the developmental defects of yakA- cells, but none of their growth defects was identified. The inactivated gene, pufA, encodes a member of the Puf protein family of translational regulators. Upon starvation, pufA- cells develop precociously and overexpress developmentally important proteins, including the catalytic subunit of cAMP-dependent protein kinase, PKA-C. Gel mobility-shift assays using a 200-base segment of PKA-C's mRNA as a probe reveals a complex with wild-type cell extracts, but not with pufA- cell extracts, suggesting the presence of a potential PufA recognition element in the PKA-C mRNA. PKA-C protein levels are low at the times of development when this complex is detectable, whereas when the complex is undetectable PKA-C levels are high. There is also an inverse relationship between PufA and PKA-C protein levels at all times of development in every mutant tested. Furthermore, expression of the putative PufA recognition elements in wild-type cells causes precocious aggregation and PKA-C overexpression, phenocopying a pufA mutation. Finally, YakA function is required for the decline of PufA protein and mRNA levels in the first 4 hours of development. We propose that PufA is a translational regulator that directly controls PKA-C synthesis and that YakA regulates the initiation of development by inhibiting the expression of PufA. Our work also suggests that Puf protein translational regulation evolved prior to the radiation of metazoan species.  相似文献   
17.
The interaction of ANS with rat hepatocytes in time was studied by fluorescence spectroscopy. The intercept of the first linear portion of the time curve of interaction showed a positive value over all the ANS concentration range employed. This value was maintained after cellular disruption by homogenization. It was affected by ionic strength, pH, and divalent cation in the incubation medium, all conditions affecting the cellular surface. These data suggest that this phenomenon might be a binding of the compound to the hepatocytes surface. Due to the time constant and its disappearance after cellular disruption the other slower component of the curve seems to correspond to a process of translocation across the membrane.  相似文献   
18.
19.
Four thalamic and cortical recordings were carried out in 5 patients. The thalamic-evoked potentials were typical and revealed a triphasic complex, but their latencies showed a relatively high standard deviation. They could be divided into two groups according to their latencies, both of which had low SD. These data suggested that there could be two types of latency of thalamic SEP, because the 4 patients' body sizes were very similar. More detailed surface, cortical and depth recordings are needed to resolve these questions.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号