首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   45篇
  2023年   13篇
  2022年   32篇
  2021年   44篇
  2020年   27篇
  2019年   31篇
  2018年   22篇
  2017年   26篇
  2016年   20篇
  2015年   25篇
  2014年   23篇
  2013年   53篇
  2012年   43篇
  2011年   43篇
  2010年   32篇
  2009年   29篇
  2008年   31篇
  2007年   28篇
  2006年   19篇
  2005年   14篇
  2004年   12篇
  2003年   19篇
  2002年   12篇
  2001年   4篇
  2000年   12篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   11篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   4篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有700条查询结果,搜索用时 750 毫秒
81.
Schistosoma mansoni, a causative agent of schistosomiasis, resides in the hepatic portal circulation of their human host up to 30 years without being eliminated by the host immune attack. Production of an antioxidant "firewall," which would neutralize the oxidative assault generated by host immune defenses, is one proposed survival mechanism of the parasite. Schistosomes lack catalase, the main H2O2-neutralizing enzyme of many organisms, and their glutathione peroxidases are in the phospholipid class with poor reactivity toward H2O2. Evidence implicates peroxiredoxins (Prx) as providing the main enzymatic activity to reduce H2O2 in the parasite. Quantitative monitoring of Prx mRNAs during parasite life cycle indicated that Prx proteins are differentially expressed, with highest expression occurring in adult stages (oxidative resistant stages). Incubation of schistosomula with Prx1 double-stranded RNA knocked down total Prx enzymatic activity and resulted in lowered survival of cultured parasites compared with controls demonstrating that Prx are essential parasite proteins. These results represent the first report of lethal gene silencing in Schistosoma. Investigation of downstream effects of Prx silencing revealed an abrupt increase of lipid peroxides and the generation of several oxidized proteins. Using mass spectrometry, parasite albumin and actin were identified as the main oxidized proteins. Gene expression analysis showed that schistosome albumin was induced by oxidative stress. This study highlights Prx proteins as essential parasite proteins and potential new targets for anti-schistosome drug development and albumin as a novel, sacrificial oxidant scavenging protein in parasite redox regulation.  相似文献   
82.
83.
Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1–18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H2O2 scavenging effect to exogenous H2O2, while lactate had no scavenging effect. 3BP induced H2O2 production. Pyruvate protected against H2O2-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.  相似文献   
84.
Thermophilic Bacillus circulans IIIB153 isolated from hot springs of North West Himalayas, India, produced an extracellular lipase, which exhibited significant biofilm disruption property on the static biofilm disruption model with a single species of Actinomyces viscosous. The gene encoding the lipase was cloned and overexpressed in Escherichia coli. Recombinant Bacillus circulans lipase (BCL), a monomer with molecular mass of 43 kDa also exhibited significant biofilm disruption activity. The enzyme was optimally active at 60°C, pH 8.5 and retained >70% of its original activity after 1 h incubation at 60°C. 3D structure of BCL developed by homology modeling showed a typical α/β hydrolase fold, a characteristic feature of lipolytic enzymes. Comparison of thermostable BCL with mesostable lipase from Chromobacterium viscosum at the sequence and structure level showed distinct variations in the structural features, with the presence of a high content of proline residues, aromatic amino acids and salt bridges. These features along with the presence of zinc-binding site observed in BCL structure could have a potential role in thermal stability of the enzyme.  相似文献   
85.
SM Sahraeian  BJ Yoon 《PloS one》2012,7(8):e41474
In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic protein-protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this network synthesis model can effectively create synthetic networks whose internal and cross-network properties closely resemble those of real PPI networks. The proposed model can serve as an effective framework for generating comprehensive benchmark datasets that can be used for reliable performance assessment of comparative network analysis algorithms. Using this model, we constructed a large-scale network alignment benchmark, called NAPAbench, and evaluated the performance of several representative network alignment algorithms. Our analysis clearly shows the relative performance of the leading network algorithms, with their respective advantages and disadvantages. The algorithm and source code of the network synthesis model and the network alignment benchmark NAPAbench are publicly available at http://www.ece.tamu.edu/bjyoon/NAPAbench/.  相似文献   
86.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   
87.
ABSTRACT: BACKGROUND: Land plants have evolved several measures to maintain their life against abiotic stresses. The accumulation of proline is the most generalized response of plants under drought, heat or salt stress conditions. It is known as an osmoprotectant which also acts as an instant source of energy during drought recovery process. But, both its role and genetic inheritance are poorly understood in agriculture crops. In the present work, advanced backcross quantitative trait locus (AB-QTL) analysis was performed to elucidate genetic mechanisms controlling proline accumulation and leaf wilting in barley under drought stress conditions. RESULTS: The analysis revealed eight QTL associated to proline content (PC) and leaf wilting (WS). QTL for PC were localized on chromosome 3 H, 4 H, 5 H and 6 H. The strongest QTL effect QPC.S42.5 H was detected on chromosome 5 H where drought inducible exotic allele was associated to increase PC by 54%. QTL effects QPC.S42.3 H, QPC.S42.4 H and QPC.S42.6 H were responsible to heighten PC due to the preeminence of elite alleles over the exotic alleles which ranged from 26% to 43%. For WS, QTL have been localized on chromosome 1 H, 2 H, 3 H and 4 H. Among these, QWS.S42.1 H and QWS.S42.4 H were associated to decrease in WS due to the introgression of exotic alleles. In addition, two digenic epistatic interaction effects were detected for WS where the additive effect of exotic alleles imparted a favorable increase in the trait value. CONCLUSIONS: The present data represents a first report on whole-genome mapping of proline accumulation and leaf wilting in barley. The detected QTL are linked to new alleles from both cultivated and wild accessions which bring out an initial insight on the genetic inheritance of PC and WS. These QTL alleles are fixed in the isogenic background of Scarlett, which will allow for positional cloning of underlying genes and to develop drought resilient barley cultivars.  相似文献   
88.
Sayed  Mohammed A  Schumann  Henrik  Pillen  Klaus  Naz  Ali A  Léon  Jens 《BMC genetics》2012,13(1):1-12

Background

Phytophthora infestans (Mont.) de Bary, the causal organism of late blight, is economically the most important pathogen of potato and resistance against it has been one of the primary goals of potato breeding. Some potentially durable, broad-spectrum resistance genes against this disease have been described recently. However, to obtain durable resistance in potato cultivars more genes are needed to be identified to realize strategies such as gene pyramiding or use of genotype mixtures based on diverse genes.

Results

A major resistance gene, Rpi-rzc1, against P. infestans originating from Solanum ruiz-ceballosii was mapped to potato chromosome X using Diversity Array Technology (DArT) and sequence-specific PCR markers. The gene provided high level of resistance in both detached leaflet and tuber slice tests. It was linked, at a distance of 3.4 cM, to violet flower colour most likely controlled by the previously described F locus. The marker-trait association with the closest marker, violet flower colour, explained 87.1% and 85.7% of variance, respectively, for mean detached leaflet and tuber slice resistance. A genetic linkage map that consisted of 1,603 DArT markers and 48 reference sequence-specific PCR markers of known chromosomal localization with a total map length of 1204.8 cM was constructed.

Conclusions

The Rpi-rzc1 gene described here can be used for breeding potatoes resistant to P. infestans and the breeding process can be expedited using the molecular markers and the phenotypic marker, violet flower colour, identified in this study. Knowledge of the chromosomal localization of Rpi-rzc1 can be useful for design of gene pyramids. The genetic linkage map constructed in this study contained 1,149 newly mapped DArT markers and will be a valuable resource for future mapping projects using this technology in the Solanum genus.  相似文献   
89.
90.
In this work the effect of angiotensin II (AT II) on proximal tubular epithelial cells (pTECs) in vitro was studied. AT II was found to activate the nuclear factor kappaB (NF-kappaB) and its controlled genes, for example, interleukin 6 (IL-6) of pTECs in a time-dependent manner. Two points with maximum NF-kappaB activation were found, the first after 12 h and the second after 3.5 days. The first point may be due to activation of NF-kappaB in pTECs in response to AT II while the second may be due to activation of the advanced glycation end product (AGE)/receptor of the AGE (RAGE) system. Thymoquinone (TQ) was found to decrease NF-kappaB activation in a dose-dependant manner with maximum inhibitory effect at a concentration of 500 nM. Also, pre-incubation of pTECs with TQ leads to disappearance of the second peak of NF-kappaB. These data are consistent with results obtained from IL-6 enzyme-linked immunosorbent assay (ELISA) and transient transfection experiments. The results explain the therapeutic value of TQ which can be used to delay end stage renal diseases in diabetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号