首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1961年   1篇
排序方式: 共有92条查询结果,搜索用时 484 毫秒
31.
Biofilms are problematic in health and industry because they are resistant to various antimicrobial treatments. Ionic liquids are a novel class of low temperature liquid salts consisting of discrete anions and cations, and have attracted considerable interest as safer alternatives to organic solvents. Ionic liquids have interesting antimicrobial properties and some could find use in the development of novel antiseptics, biocides and antifouling agents. The antimicrobial and antibiofilm activity of 1-dodecyl-3-methylimiazolium iodide ([C12MIM]I) was studied using the clinically important bacterial pathogens, Staphylococcus aureus SAV329 and Pseudomonas aeruginosa PAO1. The ionic liquid increased cell membrane permeability in both S. aureus and P. aeruginosa cells and impaired their growth, attachment and biofilm development. The ionic liquid exhibited superior antimicrobial and antibiofilm activity against the Gram-positive S. aureus compared to the Gram-negative P. aeruginosa cells. BacLight? staining and confocal microscope imaging confirmed that the ionic liquid treatment increased the cell membrane permeability of both the Gram-positive and Gram-negative bacteria. In addition, the antimicrobial and antibiofilm properties of [C12MIM]I were similar or superior to those of cetyltrimethylammonium bromide (CTAB), a well-known cationic surfactant. It is concluded that the ionic liquid induced damage to bacterial cells by disrupting cell membrane, leading to inhibition of growth and biofilm formation. Overall, the results indicate that the ionic liquid 1-dodecyl-3-methylimiazolium iodide was effective in preventing S. aureus and P. aeruginosa biofilms and could have applications in the control of bacterial biofilms.  相似文献   
32.
An unique case of dense fouling by an acidophilic, hard rubber (polymerized rubber) degrading fungus in the acid transfer pipelines of a boron enrichment plant located at Kalpakkam, India is reported. In spite of a highly adverse environment for survival (pH 1.5, no dissolved nutrients), the fungus thrived and clogged the pipeline used for transferring 0.1N hydrochloric acid (HCl). Detailed investigations were carried out to isolate and identify the fungus and examine the nutrient source for such profuse growth inside the system. Microscopic observation showed the presence of a thick filamentous fungal biomass. Molecular characterization by 18S rRNA gene sequencing showed 98% similarity of the isolate with the acidophilic fungus Bispora sp. In laboratory studies the fungus showed luxuriant growth (specific growth rate of 13 mg day?1) when scrapings of the hard rubber were used as the sole source of carbon. Scanning electron microscopy revealed extensive incursion of the fungus into the hard rubber matrix. In the laboratory, fungal growth was completely inhibited by the antifungal agent sodium omadine. The study illustrates an interesting example of biofouling under extreme conditions and demonstrates that organisms can physiologically adapt to grow under unfavourable conditions, provided that a nutrient source is available and competition is low. The use of this fungal strain in biodegradation and in development of environmentally compatible processes for disposal of rubber wastes is envisaged.  相似文献   
33.
d-Serine is a physiological co-agonist of the N-methyl-d-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, d-amino acid oxidase degrades d-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a d-serine dehydratase degrades d-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated d-threonine aldolases, which are fold-type III pyridoxal 5′-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of d-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on d-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn2+. None of the reaction products that would be expected from side reactions of the PLP-d-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the d-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His347 and Cys349 is located near the PLP-Lys45 Schiff base. A theoretical model of the enzyme-d-serine complex suggested that the hydroxyl group of d-serine directly coordinates the zinc ion, and that the ϵ-NH2 group of Lys45 is a short distance from the substrate Cα atom. The α-proton abstraction from d-serine by Lys45 and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.  相似文献   
34.
In an effort to develop a sustainable protocol for the micropropagation of a shy suckering elite chrysanthemum cv. Arka Swarna (yellow pompon type), in vitro cultures were established using surface-sterilized nodal microcuttings (1–1.5 cm) from polyhouse-grown plants on MS medium containing 3% sucrose, 0.25% phytagel, and 5 μM benzyl adenine (BA) or kinetin. Microbial contamination in the range of 6–24% was encountered during the first in vitro passage. Apparently clean cultures after one passage on MS basal medium were transferred to medium with BA or kinetin (0, 1, 5, 10, or 20 μM) in culture bottles, and were monitored for eight in vitro passages (1 mo. each) for growth and microbial contamination. Plant growth regulator (PGR)-free medium was the best for sustainable micropropagation over successive in vitro passages yielding a single shoot from cultured microcuttings. Higher cytokinin levels inhibited rooting and induced one or more shorter shoots with close nodes resulting in low propagation rates. All apparently clean stocks revealed covert endophytic bacteria during tissue-indexing using bacteriological media. Three distinct bacterial morphotypes were isolated from such stocks, identified based on 16S rRNA gene sequence analysis as different morphotypes of Curtobacterium citreum. The endophytes tended to show obvious growth on chrysanthemum culture medium with increase in cytokinin levels (5–20 μM), but such growth was not noticed in inoculations on MS medium without plants. Sustainable micropropagation of cv. Arka Swarna for more than 2 yr with the resident endophytic bacteria in covert form was realized on PGR-free MS medium giving a net propagation rate of three to four times over a subculture cycle of 2–3 wk.  相似文献   
35.

Background

Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15?psi pressure and 121°C for 5 minutes.

Results

The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426?nm. The X-Ray Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26?nm. However a maximum number of particles were observed at 4?nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.

Conclusion

This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.  相似文献   
36.
Mono- and bis-benzo[b]oxepine derivatives have been rationally synthesized to meet the molecular requirement for interaction with estrogen receptor. Bis-benzo[b]oxepines (7 and 9) and mono-benzo[b]oxepine (10) acquire geometry with phenolic groups disposed in a fashion to stimulate estrogen receptor. Structure-based investigation, in vivo activity and docking studies have been described and correlated to demonstrate a practical approach for suitable ligand design.  相似文献   
37.
38.
Plant Ecology - Studies conducted in forests have resulted in much of the ecological theory we build upon today. However, our basic understanding of forest ecology comes almost exclusively from the...  相似文献   
39.
The response of luminous bacterial cultures to conditions encountered in the fish gut such as neutral pH, the presence of bile salts, gastric juice and lysozyme was examined. The organisms preferred neutral pH. Bile salts did not inhibit their growth. Neither lysozyme nor gastric juice affected their growth and viability to any extent. In the light of these findings, the adaptability of luminous bacteria to conditions existing in the gut of fish was discussed.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号