首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   15篇
  国内免费   2篇
  2023年   2篇
  2022年   4篇
  2021年   14篇
  2020年   6篇
  2019年   12篇
  2018年   10篇
  2017年   12篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   24篇
  2012年   29篇
  2011年   24篇
  2010年   21篇
  2009年   18篇
  2008年   24篇
  2007年   19篇
  2006年   23篇
  2005年   11篇
  2004年   19篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有337条查询结果,搜索用时 46 毫秒
61.
In malignant mesothelioma (MM) cells, secreted frizzled-related protein 4 (SFRP4) expression is downregulated by promoter methylation. In this study, we evaluated the effect of encapsulated chitosan–dextran (CS–DS) nanoparticle formulations of SFRP4 and its cysteine-rich domain (CRD) and netrin-like domain (NLD) as means of SFRP4-GFP protein delivery and their effects in JU77 and ONE58 MM cell lines. CS–DS formulations of SFRP4, CRD, and NLD nanoparticles were prepared by a complex coacervation technique, and particle size ranged from 300 nm for empty particles to 337 nm for particles containing the proteins. Measurement of the zeta potential showed that all preparations were around 25 mV or above, suggesting stable formulation and good affinity for the DNA molecules. The CS–DS nanoparticle formulation maintained high integrity and entrapment efficiency. Gene delivery of SFRP4 and its domains showed enhanced biological effects in both JU77 and ONE58 cell lines when compared to the non-liposomal FUGENE® HD transfection reagent. In comparison to the CRD nanoparticles, both the SFRP4 and NLD nanoparticles significantly reduced the viability of MM cells, with the NLD showing the greatest effect. The CS–DS nanoparticle effects were observed at an earlier time point and with lower DNA concentrations. Morphological changes in MM cells were characterized by the formation of membrane-associated vesicles and green fluorescent protein expression specific to SFRP4 and the NLD. The findings from our proof-of-concept study provide a stepping stone for further investigations using in vivo models.  相似文献   
62.
A novel bacteriocin produced by avian duck isolated lactic acid bacterium Enterococcus faecalis DU10 was isolated. This bacteriocin showed a broad spectrum of antibacterial activity against important food-borne pathogens and was purified by size exclusion chromatography followed by reverse-phase high-performance liquid chromatography in a C-18 column. Tricine–SDS PAGE revealed the presence of a band with an estimated molecular mass of 6.3?kDa. The zymogram clearly linked the antimicrobial activity with this band. This result was further confirmed by mass-assisted laser desorption ionization time-of-flight mass spectrometry, since a sharp peak corresponding to 6.313?kDa was detected and the functional groups were revealed by Fourier transform infrared spectroscopy. Bacteriocin DU10 activity was found sensitive to proteinase-K and pepsin and partially affected by trypsin and α-chymotrypsin. The activity of bacteriocin DU10 was partially resistant to heat treatments ranging from 30 to 90°C for 30?min. It also withstood a treatment at 121°C for 10?min. Cytotoxicity of bacteriocin DU10 by methyl-thiazolyl-diphenyl-tetrazolium bromide assay showed that the viability of HT-29 and HeLa cells decreased 60?±?0.7% and 43?±?4.8%, respectively, in the presence of 3,200?AU/mL of bacteriocin. The strain withstood 0.3% w/v of bile oxgall and pH 2 affected the bacterial growth between 2 and 4?hr of incubation. Adhesion properties examined with HT-29 cell line showed 69.85% initial population of strain E. faecalis DU10, which was found to be strongly adhered to this cell line. These results conclude bacteriocin DU10 may be used as a potential biopreservative and E. faecalis DU10 may be used as a potential probiont to control Salmonella infections.  相似文献   
63.
Glutathione disulfide (GSSG) is the oxidized form of glutathione (GSH). GSH is a tripeptide present in the biological system in mM concentration and is the major antioxidant in the body. An increase in GSSG reflects an increase in intracellular oxidative stress and is associated with disease sates. The increase has also been demonstrated to lead to an increase in protein S-glutathionylation that can affect the structure and function of proteins. Protein S-glutathionylation serves as a regulatory mechanism during cellular oxidative stress. Though GSSG is commercially available, its roles in various GSSG-associated normal/abnormal physiological functions have not been fully delineated due to the reason that GSSG is not cell membrane permeable and a lack of method to specifically increase GSSG in cells. We have developed cationic liposomes that can effectively deliver GSSG into cells. Various concentrations of GSSG liposomes can be conveniently prepared. At 1 mg/mL, the GSSG liposomes effectively increased intracellular GSSG by 27.1±6.9 folds (n=3) in 4 h and led to a significant increase in protein S-glutathionylation confirming that the increased GSSG is functionally effective. The Trypan blue assay demonstrated that GSSG liposomes were not cytotoxic; the cell viability was greater than 95% after cells were treated with the GSSG liposomes for 4 h. A stability study showed that the dry form of the GSSG liposomes were stable for at least 70 days when stored at ?80 °C. Our data demonstrate that the GSSG liposomes can be a valuable tool in studying GSSG-associated physiological/pathological functions.  相似文献   
64.
Rat C6 glioma cultures were exposed to labelled sodium phosphate after treatment with NE with or without propanolol. Histones and non-histone proteins (NHP) were extracted from chromatin and there was no significant change in the specific activity of the total pool of histones and NHP between control and other two groups. However, after electrophoretic separation F2a2 histone showed a 60% increase while F2b and F3 histones exhibited a 40% decrease in phosphorylation in response to NE. There was no significant change in the gel pattern of NHP from different groups on SDS-PAGE. However, the 30k dalton NHP showed an increase in phosphorylation in response to NE and this increment was blocked by propanolol. The possible role of β-receptors on nuclear protein phosphorylation and genomic expression is discussed.  相似文献   
65.
66.
A series of prodrugs of didanosine were synthesized in an effort to enhance the anti-HIV activity. The 5'-OH function of didanosine was esterified with different aryl piperazine acetic acid derivatives and evaluated for anti-HIV-1 activity in MT-4 cell line using the MTT assay method. Among the synthesized compounds, (tetrahydro-5-(1,6-dihydro-6-oxopurin-9-yl)furan-2-yl)methyl 2-(4-(4-chlorophenyl)piperazin-1-yl)acetate (4b) was found to be the most potent compound with EC50 of 0.64 microM and was not toxic to the MT-4 cells up to 1000 microM with a selectivity index of > 1562. Compound 4b was found to be seven times more potent than the parent drug didanosine (EC50 of 4.8 microM) in vitro. In vitro hydrolysis of the various esters in human plasma indicated that these agents were relatively stable toward plasma esterases with t1/2 ranging from 20-60 min.  相似文献   
67.
A newly synthesized 1, 4‐bis ((4‐((4‐heptylpiperazin‐1‐yl) methyl)‐1H‐1, 2, 3‐triazol‐1‐yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forster's theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.  相似文献   
68.
In‐depth studies on the proteome of reflex tears are still inadequate. Hence, further studies on this subject will unravel the key proteins which are conjectured to possess vital functions in the protection of the ocular surface. Therefore, this study investigated the differences in the expression levels in proteome of reflex compared to basal tears. Basal (n = 10) and reflex (n = 10) tear samples from healthy subjects were collected employing the capillary method, subsequently pooled and the proteomes were characterized employing 1DE combined with LC‐ESI‐MS/MS strategy for label‐free quantitative (LFQ) analysis. The differentially expressed proteins were validated by 2DE combined with LC‐ESI‐MS/MS and targeted‐MS approach called accurate inclusion mass screening (AIMS) strategies. The analysis of the reflex tear proteome demonstrated increased abundance in proline‐rich protein 4 (PRR4) and zymogen granule protein 16 homolog B (ZG16B) for the first time. Other abundant lacrimal proteins, e.g. lactotransferrin and lysozyme remained constant. Predominantly, the lacrimal gland‐specific PRR4 represents the major increased protein in reflex tears in an attempt to wash out irritants that come into contact with the eye. Conversely, decreased abundance in Ig alpha‐1 chain C, polymeric immunoglobulin receptor, cystatin S/SN, clusterin and mammaglobin were observed. This study had further unraveled the intricate proteome regulation during reflex tearing, especially the potential role of PRR4, which may be the key player in the protection and maintenance of dynamic balance of the ocular surface.  相似文献   
69.
Natural inhibitors occupy an important place in the potential to neutralize the toxic effects caused by snake venom proteins and enzymes. It has been well recognized for several years that animal sera, some of the plant and marine extracts are the most potent in neutralizing snake venom phospholipase A(2) (svPLA(2)). The implication of this review to update the latest research work which has been accomplished with svPLA(2) inhibitors from various natural sources like animal, marine organisms presents a compilation of research in this field over the past decade and revisiting the previous research report including those found in plants. In addition to that the bioactive compounds/inhibitor molecules from diverse sources like aristolochic alkaloid, flavonoids and neoflavonoids from plants, hydrocarbones -2, 4 dimethyl hexane, 2 methylnonane, and 2, 6 dimethyl heptane obtained from traditional medicinal plants Tragia involucrata (Euphorbiaceae) member of natural products involved for the inhibitory potential of phospholipase A(2) (PLA(2)) enzymes in vitro and also decrease both oedema induced by snake venom as well as human synovial fluid PLA(2). Besides marine natural products that inhibit PLA(2) are manoalide and its derivatives such as scalaradial and related compounds, pseudopterosins and vidalols, tetracylne from synthetic chemicals etc. There is an overview of the role of PLA(2) in inflammation that provides a rationale for seeking inhibitors of PLA(2) as anti-inflammatory agents. However, more studies should be considered to evaluate antivenom efficiency of sera and other agents against a variety of snake venoms found in various parts of the world. The implications of these new groups of svPLA(2) toxin inhibitors in the context of our current understanding of snake biology as well as in the development of new novel antivenoms therapeutics agents in the efficient treatment of snake envenomations are discussed.  相似文献   
70.
In this study, we evaluated the anti-tumor potential of luteolin (30mg/kg, p.o.), combined with cyclophosphamide (10mg/kg, i.p.) (LU+CYC) orally administered for 20 days; and CYC individually for 10 days against 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in Wistar rats. Combination treatment (LU+CYC) inhibited the incidence rate of tumors and decreased tumor volume significantly without changing the total body weight of the animals. Long-term treatment did not show any apparent toxicity in rats. The CYC-treated group showed potential reduction of tumor volume (74%), severe toxicity, and loss of body weight. In order to elucidate the anticancer mechanism of luteolin, antioxidant activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) generation in the liver, kidney and breast, as well as protein profiles, were also examined. Biochemical analysis of the combination-treated group showed significant (P<0.01; P<0.05) inhibition of lipid peroxide (LPx) formation (oxygen-free radicals), the level and the activity of SOD, CAT and GPx were found to be very high than the LU and CYC individually treated rats at a 30mg/kg dose. 2D gel electrophoresis analysis revealed that (56kDa) high molecular weight protein was detected in tumors of rats receiving combination treatment than the cancer controls. The biological significance of that protein involved for the dysfunction of cancer cells and induces apoptosis. Histopathological changes also confirmed the formation of tumor tubules and neovascularization after the treatment. Overall, these results suggest that the combination treatment provided antioxidant defense with strong chemopreventive activity against the genesis of DMBA-induced mammary tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号