首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   10篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   13篇
  2013年   18篇
  2012年   28篇
  2011年   26篇
  2010年   10篇
  2009年   10篇
  2008年   8篇
  2007年   10篇
  2006年   10篇
  2005年   12篇
  2004年   12篇
  2003年   6篇
  2002年   5篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
41.

Background

Bistable behaviors are prevalent in cell signaling and can be modeled by ordinary differential equations (ODEs) with kinetic parameters. A bistable switch has recently been found to regulate the activation of transforming growth factor-β1 (TGF-β1) in the context of liver fibrosis, and an ordinary differential equation (ODE) model was published showing that the net activation of TGF-β1 depends on the balance between two antagonistic sub-pathways.

Results

Through modeling the effects of perturbations that affect both sub-pathways, we revealed that bistability is coupled with the signs of feedback loops in the model. We extended the model to include calcium and Krüppel-like factor 2 (KLF2), both regulators of Thrombospondin-1 (TSP1) and Plasmin (PLS). Increased levels of extracellular calcium, which alters the TSP1-PLS balance, would cause high levels of TGF-β1, resembling a fibrotic state. KLF2, which suppresses production of TSP1 and plasminogen activator inhibitor-1 (PAI1), would eradicate bistability and preclude the fibrotic steady-state. Finally, the loop PLS???TGF-β1???PAI1 had previously been reported as negative feedback, but the model suggested a stronger indirect effect of PLS down-regulating PAI1 to produce positive (double-negative) feedback in a fibrotic state. Further simulations showed that activation of KLF2 was able to restore negative feedback in the PLS???TGF-β1???PAI1 loop.

Conclusions

Using the TGF-β1 activation model as a case study, we showed that external factors such as calcium or KLF2 can induce or eradicate bistability, accompanied by a switch in the sign of a feedback loop (PLS???TGF-β1???PAI1) in the model. The coupling between bistability and positive/negative feedback suggests an alternative way of characterizing a dynamical system and its biological implications.
  相似文献   
42.
Chronic hepatitis C infection is the primary cause for cirrhosis of the liver and hepatocellular carcinoma leading to liver failure and transplantation. The etiological agent hepatitis C virus produces a single positive strand RNA that is processed further with the help of NS3 serine protease to produce mature virus. Inhibition of this protease can potentially be used to develop drugs for HCV infections. Boceprevir is a ketoamide derived novel inhibitor of HCV NS3 protease that has been progressed to clinical trials and proven to be efficacious in humans. Herein, we report our efforts in identifying an aza-peptide derivative as a potential second generation compound, that lacks electrophilic ketoamide group and are potent in enzyme and replicon assay.  相似文献   
43.
Prolonged hepatitis C infection is the leading cause for cirrhosis of the liver and hepatocellular carcinoma. The etiological agent HCV virus codes a single polyprotein of approximately 3000 amino acids that is processed with the help of a serine protease NS3A to produce structural and non-structural proteins required for viral replication. Inhibition of NS3 protease can potentially be used to develop drugs for treatment of HCV infections. Herein, we report the development of a series of novel NS3 serine protease inhibitors derived from 2-aza-bicyclo[2.2.1]-heptane carboxylic acid with potential therapeutic use for treatment of HCV infections.  相似文献   
44.
A functional contribution of pathogenesis-related 1 (PR-1) proteins to host defense has been established. However, systematic investigation of the PR-1 gene family in grapevine (Vitis spp.) has not been conducted previously. Through mining genomic databases, we identified 21 PR-1 genes from the Vitis vinifera genome. Polypeptides encoded by putative PR-1 genes had a signal sequence of about 25 residues and a mature protein of 10.9–29 kDa in size. PR-1 mature proteins contained a highly conserved six-cysteine motif and pI values ranging from 4.6 to 9. A major cluster with 14 PR-1 genes was mapped to a 280-kb region on chromosome 3. One particular PR-1 gene within the cluster encoding a basic-type isoform (pI 7.77), herein named VvPR1b1, was isolated from various genotypes of grapevine (Vitis spp.) for functional studies. Sequence analysis of PCR-amplified DNA revealed that all genotypes contained a single VvPR1b1 gene except for a broad-spectrum bacterial and fungal disease resistant Florida bunch grape hybrid, ‘BN5-4’, from which seven different homologues were identified. Duplication of VvPR1b1-related genes encoding acidic-type PR-1 isoforms was also observed among several genotypes. However, transgenic expression analysis of grapevine PR-1 genes under strong constitutive promoters in transgenic tobacco revealed that only the basic-type VvPR1b1 gene duplicated in ‘BN5-4’ was capable of conferring high level resistance to bacterial disease caused by Pseudomonas syringae pv. tabaci.  相似文献   
45.

Background

Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics.

Results

The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs.

Conclusions

The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful consideration in antimicrobial peptide studies, as the systemic distribution can be significantly affected by HSA interactions.  相似文献   
46.
Key pathways like insulin signaling, AMP activated kinase (AMPK) activation and inflammatory signaling are involved in the complex pathological network of hepatic insulin resistance. Our aim is to investigate whether grape seed proanthocyanidins (GSP) and metformin (MET) target any of these pathways in insulin resistant rat liver. Albino Wistar rats were rendered insulin resistant by feeding a high fat-fructose diet (HFFD). Either GSP (100 mg/kg b.w), MET(50 mg/kg b.w) or both were administered to insulin resistant rats as therapeutic options. HFFD-feeding caused hyperglycemia, hyperinsulinemia, increased gluconeogenesis, decreased tyrosine phosphorylation of insulin receptor-β(IR-β) and insulin receptor substrate-1 (IRS-1) and increased serine phosphorylation of IRS-1. The association of p85α subunit of phosphotidyl inositol 3 kinase(PI3K) with IRS-1 and subsequent Akt phosphorylation were reduced while the expression of mitogen activated protein kinases (MAPK) were increased in HFFD rats. Both MET and GSP reduced hyperglycemia and hyperinsulinemia and improved glycolysis, tyrosine phosphorylation of IR-β and IRS-1, IRS-1-PI3K association and Akt activation. However, activation of tumor necrosis factor-α, interleukin-6, leptin and suppressor of cytokine signaling-3 and reduction in adiponectin caused by chronic HFFD feeding were reversed by GSP better than by MET. Activation of AMPK by GSP was much less compared to that by MET. These findings suggest that GSP might activate PI3K pathway and promote insulin action by reducing serine kinase activation and cytokine signaling and MET by targeting AMPK. The beneficial effects were enhanced during combination therapy. Thus, combination therapy with MET and GSP may be considered for the management of metabolic syndrome.  相似文献   
47.

Aim

To assess the efficacy of a biodegradable, prednisolone acetate implant in a rabbit uveitis model.

Methods

Randomized, controlled study of biodegradable microfilms preloaded with prednisolone acetate (PA) in a rabbit uveitis model. Experimental uveitis was induced by unilateral intravitreal injection of Mycobacterium tuberculosis H37Ra antigen (50 ug; 1 ug/uL) in preimmunized rabbits. PA-loaded poly[d,l-lactide-co-ε-caprolactone] (PLC) microfilms (n = 10) and blank microfilms (n = 6) were implanted subconjunctivally. An estimate of PA release in vivo was calculated from measured residual PA amounts in microfilms after the rabbits were sacrificed. The eyes were clinically monitored for ocular inflammation for 28 days. Histopathological examination of the enucleated eyes was performed at the end of the study period.

Results

In vitro studies revealed that sandwich PA-loaded microfilm formulations exhibited higher release kinetic compared to homogenous PA-loaded microfilms. The 60–40–60% microfilm released an average of 0.034 mg/day of PA over the period of 60 days in vitro; and we found that approximately 0.12 mg/day PA was released in vivo. Animals implanted with the PA-loaded microfilms exhibited significantly lowered median inflammatory scores when compared against the control group in this model for recurrent uveitis (P<0.001). The implants were clinically well tolerated by all the animals. Histology results showed no significant scarring or inflammation around the PA-loaded microfilms.

Conclusion

Our pilot study demonstrated that a subconjunctival PA-loaded implant is effective in suppressing inflammation in the rabbit model of uveitis, by providing therapeutic levels of PA that attenuated the inflammatory response even after a rechallenge. Longer term studies are now needed to establish the therapeutic potential of such a delivery system for treatment of ocular inflammation.  相似文献   
48.
There are an estimated 285 million people with visual impairment worldwide, of whom 39 million are blind. The pathogenesis of many eye diseases remains poorly understood. The human eye is currently an emerging proteome that may provide key insight into the biological pathways of disease. We review proteomic investigations of the human eye and present a catalogue of 4842 nonredundant proteins identified in human eye tissues and biofluids to date. We highlight the need to identify new biomarkers for eye diseases using proteomics. Recent advances in proteomics do now allow the identification of hundreds to thousands of proteins in tissues and fluids, characterization of various PTMs and simultaneous quantification of multiple proteins. To facilitate proteomic studies of the eye, the Human Eye Proteome Project (HEPP) was organized in September 2012. The HEPP is one of the most recent components of the Biology/Disease‐driven Human Proteome Project (B/D‐HPP) whose overarching goal is to support the broad application of state‐of‐the‐art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. The large repertoire of investigative proteomic tools has great potential to transform vision science and enhance understanding of physiology and disease processes that affect sight.  相似文献   
49.
The reversal effect of troxerutin (TX) on obesity, insulin resistance, lipid accumulation, oxidative damage, and hypertension induced in the high-fat–high-fructose diet (HFFD)-fed mice model of metabolic syndrome was investigated. Adult male Mus musculus mice of body weight 25–30 g were fed either control diet or HFFD. Each group was divided into two and treated or untreated with TX (150 mg/kg bw, p.o.) from the 16th day. Assays were done in plasma and heart after 30 and 60 days of the experimental period. Significant increase in the levels of glucose and insulin, blood pressure (BP), and oxidative stress were observed after 30 days of HFFD feeding as compared to control. Animals fed HFFD for 60 days developed more severe changes in the above parameters compared to those fed for 30 days. Hearts of HFFD-fed mice registered downregulation of peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor gamma coactivator-1α, carnitine palmitoyl transferse-1b and AMP-activated protein kinase; and upregulation of cluster of differentiation 36, fatty acid-binding protein-1, and sterol regulatory element-binding protein-1c after 60 days. TX administration restricted obesity (as seen by Lee’s index); improved whole body insulin sensitivity; reduced BP, lipid accumulation, and oxidative damage; upregulated fatty acid (FA) oxidation; and downregulated FA transport and lipogenesis. Histology of heart revealed that TX diminishes inflammatory cell infiltration and fatty degeneration in HFFD-fed mice. The antioxidant property of TX and its ability to influence lipid regulatory genes could be the underlying mechanisms for its beneficial effects.  相似文献   
50.
Nuclear envelopes relatively free of plasma membrane contamination were isolated from the male rat liver. Equilibrium binding of T3 to nuclear envelopes occurred after incubation for 3 h at 20 degrees C. Scatchard analysis revealed two classes of binding sites; a high affinity site having a KD of 1.8 nM with a maximum binding capacity of 14.5 pmol/mg protein and a low affinity site having a KD of 152.1 nM with a maximum binding capacity of 346.8 pmol/mg protein. No degradation of the radioligand occurred during incubation with the nuclear envelope. T4, rT3 and Triac competed effectively for the binding of T3 to the high affinity site whereas only T4 competed well for binding to the lower affinity site. The binding site was protease sensitive but not salt extractable. Multiple T3 binding sites having similar affinities have been reported on plasma membranes. An intriguing possibility is that membrane binding sites may be involved in translocation of thyroid hormone across membrane barriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号