首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   944篇
  免费   63篇
  国内免费   1篇
  2024年   2篇
  2023年   5篇
  2022年   14篇
  2021年   27篇
  2020年   19篇
  2019年   27篇
  2018年   26篇
  2017年   25篇
  2016年   27篇
  2015年   52篇
  2014年   50篇
  2013年   70篇
  2012年   77篇
  2011年   83篇
  2010年   49篇
  2009年   39篇
  2008年   59篇
  2007年   54篇
  2006年   46篇
  2005年   46篇
  2004年   41篇
  2003年   43篇
  2002年   31篇
  2001年   15篇
  2000年   18篇
  1999年   10篇
  1998年   5篇
  1997年   8篇
  1996年   7篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1973年   2篇
  1972年   1篇
  1957年   1篇
排序方式: 共有1008条查询结果,搜索用时 31 毫秒
91.
The purpose of the present study was to develop an optimized gastric floating drug delivery system (GFDDS) containing metoprolol tartrate (MT) as a model drug by the optimization technique. A 23 factorial design was employed in formulating the GFDDS with total polymer content-to-drug ratio (X1), polymer-to-polymer ratio (X2), and different viscosity grades of hydroxypropyl methyl cellulose (HPMC) (X3) as independent variables. Four dependent variables were considered: percentage of MT release at 8 hours, T50%, diffusion coefficient, and floating time. The main effect and interaction terms were quantitatively evaluated using a mathematical model. The results indicate that X1 and X2 significantly affected the floating time and release properties, but the effect of different viscosity grades of HPMC (K4M and K10M) was nonsignificant. Regression analysis and numerical optimization were performed to identify the best formulation. Fickian release transport was confirmed as the release mechanism from the optimized formulation. The predicted values agreed well with the experimental values, and the results demonstrate the feasibility of the model in the development of GFDDS.  相似文献   
92.
Seed filling is a dynamic, temporally regulated phase of seed development that determines the composition of storage reserves in mature seeds. Although the metabolic pathways responsible for storage reserve synthesis such as carbohydrates, oils, and proteins are known, little is known about their regulation. Protein phosphorylation is a ubiquitous form of regulation that influences many aspects of dynamic cellular behavior in plant biology. Here a systematic study has been conducted on five sequential stages (2, 3, 4, 5, and 6 weeks after flowering) of seed development in oilseed rape (Brassica napus L. Reston) to survey the presence and dynamics of phosphoproteins. High resolution two-dimensional gel electrophoresis in combination with a phosphoprotein-specific Pro-Q Diamond phosphoprotein fluorescence stain revealed approximately 300 phosphoprotein spots. Of these, quantitative expression profiles for 234 high quality spots were established, and hierarchical cluster analyses revealed the occurrence of six principal expression trends during seed filling. The identity of 103 spots was determined using LC-MS/MS. The identified spots represented 70 non-redundant phosphoproteins belonging to 10 major functional categories including energy, metabolism, protein destination, and signal transduction. Furthermore phosphorylation within 16 non-redundant phosphoproteins was verified by mapping the phosphorylation sites by LC-MS/MS. Although one of these sites was postulated previously, the remaining sites have not yet been reported in plants. Phosphoprotein data were assembled into a web database. Together this study provides evidence for the presence of a large number of functionally diverse phosphoproteins, including global regulatory factors like 14-3-3 proteins, within developing B. napus seed.  相似文献   
93.
The ligand-binding domain of Fbl (the fibrinogen binding protein from Staphylococcus lugdunensis) shares 60% sequence identity with ClfA (clumping factor A) of Staphylococcus aureus. Recombinant Fbl corresponding to the minimum fibrinogen-binding region (subdomains N2N3) was compared with ClfA for binding to fibrinogen. Fbl and ClfA had very similar affinities for fibrinogen by surface plasmon resonance. The binding site for Fbl in fibrinogen was localized to the extreme C terminus of the fibrinogen γ-chain at the same site recognized by ClfA. Isothermal titration calorimetry showed that Fbl and ClfA had very similar affinities for a peptide mimicking the C-terminal segment of the fibrinogen γ-chain. The peptide also inhibited binding of Fbl and ClfA to fibrinogen. A series of substituted γ-chain variant peptides behaved very similarly when used to inhibit ClfA and Fbl binding to immobilized fibrinogen. Both ClfA and Fbl bound to bovine fibrinogen with a lower affinity compared with human fibrinogen and did not bind detectably to ovine fibrinogen. The structure of the N2N3 subdomains of Fbl in complex with the fibrinogen γ-chain peptide was modeled based on the crystal structure of the N2N3 subdomains of the ClfA-γ-chain peptide complex. Residues in the putative binding trench likely to be involved in fibrinogen binding were identified. Fbl variant proteins with alanine substitutions in key residues had reduced affinities for fibrinogen. Thus Fbl and ClfA bind the same site in fibrinogen by similar mechanisms.  相似文献   
94.
Role of serotonin in olfactory recognition was tested by depleting the olfactory bulb serotonin during postnatal day (PND) 1 - 4 following administration of 5,7-dihydroxytryptamine. Significant difference in the olfactory recognition test was observed during PND5-7; control pups successfully recognized and oriented towards their mother; whereas treated pups failed to recognize their mother odour. Later on, during PND12-14, both group of pups responded equally in the recognition test. Levels of olfactory bulb serotonin were depleted (53.3%) in the treated pups on PND-8, which was restored on PND-14 with only 15% variation. Further analysis demonstrated that depletion of serotonin in olfactory bulb did not affect the normal suckling and weight gain, it only modulates olfactory recognition.  相似文献   
95.
96.
97.
98.
A critical role for calponin 2 in vascular development   总被引:3,自引:0,他引:3  
Calponin 2 (h2 calponin, CNN2) is an actin-binding protein implicated in cytoskeletal organization. We have found that the expression of calponin 2 is relatively restricted to vasculature from 16 to 30 h post-fertilization during zebrafish (Danio rerio) development. Forty-eight hours after injecting antisense morpholino oligos against calponin 2 into embryos at the 1-4-cell stage, zebrafish demonstrated various cardiovascular defects, including sluggish axial and head circulation, absence of circulation in intersegmental vessels and in the dorsal longitudinal anastomotic vessel, enlarged cerebral ventricles, and pericardial edema, in addition to an excess bending, spiraling tail and twisting of the caudal fin. Knockdown of calponin 2 in the Tg(fli1:EGFP)(y1) zebrafish line (in which a fli1 promoter drives vascular-specific enhanced green fluorescent protein expression) indicated that diminished calponin 2 expression blocked the proper migration of endothelial cells during formation of intersegmental vessels. In vitro studies showed that basic fibroblast growth factor-induced human umbilical vein endothelial cell migration was down-regulated by knockdown of calponin 2 expression using an antisense adenovirus, and overexpression of calponin 2 enhanced migration and hastened wound healing. These events were correlated with activation of mitogen-activated protein kinase; moreover, inhibition of this pathway blocked the promigratory effect of calponin 2. Collectively, these data suggest that calponin 2 plays an important role in the migration of endothelial cells both in vivo and in vitro and that its expression is critical for proper vascular development.  相似文献   
99.
The purpose of this study was to characterize the variation in biochemical composition of 89 strains of Listeria monocytogenes with different susceptibilities towards sakacin P, using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The strains were also analyzed using amplified fragment length polymorphism (AFLP) analysis. Based on their susceptibilities to sakacin P, the 89 strains have previously been divided into two groups. Using the FTIR spectra and AFLP data, the strains were basically differentiated into the same two groups. Analyses of the FTIR and Raman spectra revealed that the strains in the two groups contained differences in the compositions of carbohydrates and fatty acids. The relevance of the variation in the composition of carbohydrates with respect to the variation in the susceptibility towards sakacin P for the L. monocytogenes strains is discussed.  相似文献   
100.
Rab GTPases regulate vesicle budding, motility, docking, and fusion. In cells, their cycling between active, GTP-bound states and inactive, GDP-bound states is regulated by the action of opposing enzymes called guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). The substrates for most RabGAPs are unknown, and the potential for cross-talk between different membrane trafficking pathways remains uncharted territory. Rab9A and its effectors regulate recycling of mannose 6-phosphate receptors from late endosomes to the trans Golgi network. We show here that RUTBC2 is a TBC domain-containing protein that binds to Rab9A specifically both in vitro and in cultured cells but is not a GAP for Rab9A. Biochemical screening of Rab protein substrates for RUTBC2 revealed highest GAP activity toward Rab34 and Rab36. In cells, membrane-associated RUTBC2 co-localizes with Rab36, and expression of wild type RUTBC2, but not the catalytically inactive, RUTBC2 R829A mutant, decreases the amount of membrane-associated Rab36 protein. These data show that RUTBC2 can act as a Rab36 GAP in cells and suggest that RUTBC2 links Rab9A function to Rab36 function in the endosomal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号