首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   29篇
  2024年   2篇
  2023年   11篇
  2022年   5篇
  2021年   17篇
  2020年   6篇
  2019年   16篇
  2018年   19篇
  2017年   13篇
  2016年   25篇
  2015年   36篇
  2014年   49篇
  2013年   60篇
  2012年   54篇
  2011年   71篇
  2010年   29篇
  2009年   26篇
  2008年   36篇
  2007年   36篇
  2006年   26篇
  2005年   18篇
  2004年   14篇
  2003年   13篇
  2002年   13篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1959年   1篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
91.
Synthesis of polyhydroxylated oxabicyclo[4,4,0]decanes, which constitute a new family of annulated carbasugars, has been accomplished in a stereoselective manner by employing readily available 1,2-anhydro-3,4,6-tri-O-benzyl-α-d-glycopyranoses.  相似文献   
92.
Glutaminase-free l-asparaginase is known to be an excellent anticancer agent. In the present study, statistically based experimental designs were applied to maximize the production of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Nine components of the medium were examined for their significance on the production of l-asparaginase using the Plackett–Burman experimental design. The medium components, viz., glucose, l-asparagine, KH2PO4, and MgSO4·7H2O, were screened based on their high confidence levels (P < 0.04). The optimum levels of glucose, l-asparagine, KH2PO4, and MgSO4·7H2O were found to be 2.076, 5.202, 1.773, and 0.373 g L−1, respectively, using the central composite experimental design. The maximum specific activity of l-asparaginase in the optimized medium was 27.88 U mg−1 of protein, resulting in an overall 8.3-fold increase in the production compared to the unoptimized medium.  相似文献   
93.
The aim of this study was to investigate the effectiveness of bioaugmentation and transfer of plasmid pWWO (TOL plasmid) to mixed microbial populations in pilot and laboratory scale sequencing batch biofilm reactors (SBBRs) treating synthetic wastewater containing benzyl alcohol (BA) as a model xenobiotic. The plasmid donor was a Pseudomonas putida strain chromosomally tagged with the gene for the red fluorescent protein carrying a green fluorescent protein labeled TOL plasmid, which confers degradation capacity for several compounds including toluene and BA. In the pilot scale SBBR donor cells were disappeared 84 h after inoculation while transconjugants were not detected at all. In contrast, both donor and transconjugant cells were detected in the laboratory scale reactor where the ratio of transconjugants to donors fluctuated between 1.9 × 10?1 and 8.9 × 10?1 during an experimental period of 32 days. BA degradation rate was enhanced after donor inoculation from 0.98 mg BA/min prior to inoculation to 1.9 mg BA/min on the seventeenth day of operation. Survival of a bioaugmented strain, conjugative plasmid transfer and enhanced BA degradation was demonstrated in the laboratory scale SBBR but not in the pilot scale SBBR.  相似文献   
94.
95.
There is increasing evidence that p63, and specifically ΔNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN), a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or ΔN-specific p63 isoforms in squamous cell carcinoma (SCC9) or immortalized prostate epithelial (iPrEC) cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT) was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.  相似文献   
96.
A series of four naturally occurring homoisoflavonoids and eight analogs have been synthesized starting from an appropriately substituted phenol through chroman-4-one, in four steps. The products were assigned as E-isomers based on NMR spectroscopic data. The E-isomers were converted into Z-isomers by photoisomerization. The E- and Z-isomers showed distinct chemical shifts and the differences between (E) and (Z)-homoisoflavonoids in the proton NMR spectra afford a useful method for ascertaining the stereochemistry. The antioxidant activity of homoisoflavonoids was determined by superoxide (NBT) and DPPH free radical scavenging methods. The analog 7-hydroxy-3-[(3,4,5-trihydroxyphenyl)methylene]chroman-4-one displayed excellent activity followed by sappanone A in both the methods and were several times potent than the commercial antioxidants like BHA, BHT, etc. These compounds were evaluated in vitro for their inhibitory activities against 5-lipoxygenase (5-LOX) enzyme. The analog 7-hydroxy-3-[(N,N-dimethylaminophenyl)methylene]chroman-4-one was found to possess potent inhibitory activity and was comparable to that of the standard, nordihydroguiaretic acid. These results suggest that these homoisoflavonoids, with their potent antioxidant and 5-LOX inhibitory activities, may have useful applications as antioxidants and lead compounds for asthma and inflammatory diseases.  相似文献   
97.
Lysyl tRNA synthetases facilitate amino acylation and play a crucial role in the essential cellular process of translation. They are grouped into two distinct classes (class I and class II). Class I lysyl tRNA synthetase is considered as a drug target for syphilis caused by Treponema pallidum. Comparative genome analysis shows the absence of its sequence homolog in eukaryotes. The structure of class I lysyl tRNA synthetase from Treponema pallidum is unknown and the difficulties in the in vitro culturing of Treponema makes it non-trivial. We used the structural template of class I lysyl tRNA synthetase from the archaea Pyrococcus horikoshii for modeling the Treponema pallidum lysyl tRNA synthetase structure. Thus, we propose the usefulness of the modeled class I lysyl tRNA synthetase for the design of suitable inhibitors towards the treatment of syphilis.  相似文献   
98.

Background

XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death.

Methodology/Principal Findings

We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.

Conclusions/Significance

Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas.  相似文献   
99.
100.
Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm?1, 7515.24 to 7108.33 cm?1, and 5257.00 to 5098.87 cm?1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm?1was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号