首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   25篇
  303篇
  2024年   2篇
  2023年   1篇
  2022年   10篇
  2021年   17篇
  2020年   6篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   10篇
  2015年   13篇
  2014年   26篇
  2013年   15篇
  2012年   23篇
  2011年   17篇
  2010年   14篇
  2009年   14篇
  2008年   20篇
  2007年   12篇
  2006年   4篇
  2005年   12篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   3篇
  1996年   6篇
  1994年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
11.
Understanding why some species have more genetic diversity than others is central to the study of ecology and evolution, and carries potentially important implications for conservation biology. Yet not only does this question remain unresolved, it has largely fallen into disregard. With the rapid decrease in sequencing costs, we argue that it is time to revive it.What evolutionary forces maintain genetic diversity in natural populations? How do diversity levels relate to census population sizes (Box 1)? Do low levels of diversity limit adaptation to novel selective pressures? Efforts to address such questions spurred the rise of modern population genetics and contributed to the development of the neutral theory of molecular evolution—the null hypothesis for much of evolutionary genetics and comparative genomics [1][3]. Yet these questions remain wide open and, for close to two decades, have been neglected [4]. Most notably, little progress has been made to resolve a riddle first pointed out 40 years ago on the basis of allozyme data: the mysteriously narrow range of genetic diversity levels seen across taxa that vary markedly in their census population sizes [5]. This gap in our understanding is glaring, and may hamper efforts at conservation (e.g., [6]).

Box 1. Glossary

Allozymes: Allelic variants of a protein, often detected by differences in gel electrophoresis. Balancing selection: Natural selection that maintains variation longer than expected from genetic drift alone. Census population size: The actual number of individuals in a population; methods to estimate this number vary depending on the species and may involve aerial, transect, or capture/recapture counts. Diversity levels: The measure used here is the probability that a pair of randomly chosen haplotypes differ at a site. Effective population size: The size of an idealized population with some of the same properties as the actual one, e.g., the same rate of genetic drift. Under simplifying assumptions, notably a constant population size and no population structure, this parameter can be estimated from observed diversity levels, given an independent estimate of the mutation rate. Fluctuating selection: When the fitness of an allele changes over time or over space. Genetic draft: A dramatic loss of genetic variation due to strong, frequent selection at nearby sites [8]. Genetic drift: In a finite population, the loss of genetic variation due to the random sampling of gametes at each generation. Local adaptation: Adaptation to a particular environment that is not shared by the entire species. Nearly neutral theory of molecular evolution: A modification of the neutral theory, in which many mutations are slightly deleterious, rather than strictly neutral or strongly deleterious [75]. Neutral theory of molecular evolution: The theory that most genetic variation seen within populations and between species is neutral, and most mutations are either neutral or strongly deleterious [11]. Panmixia: Random mating among individuals, and hence no population structure. Phylogenetically independent contrasts: A statistical method that allows one to compare properties of species controlling for their evolutionary relationship. Purifying (negative) selection: Natural selection that favors the common, fitter allele against rare, deleterious alleles. Selection at linked sites: Selection at sites linked to the locus under consideration, which can affect the population dynamics of alleles at that locus. Silent sites: A general term for synonymous, intronic, and intergenic sites—all sites at which mutations do not change an amino acid. Variation-reducing selection: Selection that leads to a decrease in diversity at linked sites.With the recent technological revolution in sequencing, the data needed to address questions about the determinants of genetic diversity levels are now within reach. As a first step towards reviving these questions, we compile existing estimates of nuclear sequence diversity. These data are highly preliminary, but they underscore how little is known about the narrow span of diversity levels across species or why some species maintain more genetic variation than others [5],[7],[8], and they offer a glimpse of trends that may be worth pursuing.  相似文献   
12.
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.  相似文献   
13.
The emergence of multicellularity is strongly correlated with the expansion of tyrosine kinases, a conserved family of signaling enzymes that regulates pathways essential for cell-to-cell communication. Although tyrosine kinases have been classified from several model organisms, a molecular-level understanding of tyrosine kinase evolution across all holozoans is currently lacking. Using a hierarchical sequence constraint-based classification of diverse holozoan tyrosine kinases, we construct a new phylogenetic tree that identifies two ancient clades of cytoplasmic and receptor tyrosine kinases separated by the presence of an extended insert segment in the kinase domain connecting the D and E-helices. Present in nearly all receptor tyrosine kinases, this fast-evolving insertion imparts diverse functionalities, such as post-translational modification sites and regulatory interactions. Eph and EGFR receptor tyrosine kinases are two exceptions which lack this insert, each forming an independent lineage characterized by unique functional features. We also identify common constraints shared across multiple tyrosine kinase families which warrant the designation of three new subgroups: Src module (SrcM), insulin receptor kinase-like (IRKL), and fibroblast, platelet-derived, vascular, and growth factor receptors (FPVR). Subgroup-specific constraints reflect shared autoinhibitory interactions involved in kinase conformational regulation. Conservation analyses describe how diverse tyrosine kinase signaling functions arose through the addition of family-specific motifs upon subgroup-specific features and coevolving protein domains. We propose the oldest tyrosine kinases, IRKL, SrcM, and Csk, originated from unicellular premetazoans and were coopted for complex multicellular functions. The increased frequency of oncogenic variants in more recent tyrosine kinases suggests that lineage-specific functionalities are selectively altered in human cancers.  相似文献   
14.
Abstract

Three new Ru(II) polypyridyl complexes [Ru(phen)2CIIP]2+ (1) {CIIP = 2-(5-Chloro-3a H-Isoindol-3-yl)-1H-Imidazo[4,5-f][1, 10]phenantholine} (phen = 1, 10 phenanthroline), [Ru(bpy)2CIIP]2+ (2) (bpy = 2, 2′ bipyridine) and [Ru(dmb)2CIIP]2+ (3) (dmb = 4, 4′-dimethyl 2, 2′ bipyridine) were synthesized and characterized by different spectral methods. The DNA-binding behavior of these complexes was investigated by absorption, emission spectroscopic titration and viscosity measurements, indicating that these three complexes bind to CT-DNA in an intercalative mode, but binding affinities of these complexes were different. The DNA-binding constants Kb of complexes 1, 2 and 3 were calculated in the order of 106. All three complexes cleave pBR322 DNA in photoactivated cleavage studies and exhibit good antimicrobial activity. Anticancer activity of these Ru(II) complexes was evaluated in MCF7 cells. Cytotoxicity by MTT assay showed growth inhibition in a dose dependent manner. Cell cycle analysis by flow cytometry data showed an increase in Sub G1 population. Annexin V FITC/PI staining confirms that these complexes cause cell death by the induction of apoptosis.  相似文献   
15.
Allen, David L., Jon K. Linderman, Roland R. Roy, Richard E. Grindeland, Venkat Mukku, and V. Reggie Edgerton. Growth hormone/IGF-I and/or resistive exercise maintains myonuclearnumber in hindlimb unweighted muscles. J. Appl.Physiol. 83(5): 1857-1861, 1997.In the presentstudy of rats, we examined the role, during 2 wk ofhindlimb suspension, of growth hormone/insulin-like growth factor I(GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleusmuscle that express type I myosin heavy chain. Hindlimb suspensionresulted in a significant decrease in mean soleus wet weight that wasattenuated either by exercise alone or by exercise plus GH/IGF-Itreatment but was not attenuated by hormonal treatment alone. Both meanmyonuclear number and mean fiber cross-sectional area (CSA) of fibersexpressing type I myosin heavy chain decreased after 2 wk of suspensioncompared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 µm2, respectively). NeitherGH/IGF-I treatment nor exercise alone affected myonuclear number orfiber CSA, but the combination of exercise and growth-factor treatmentattenuated the decrease in both variables. A significant correlationwas found between mean myonuclear number and mean CSA across allgroups. Thus GH/IGF-I administration and brief bouts of muscle loadinghad an interactive effect in attenuating the loss of myonuclei inducedby chronic unloading.

  相似文献   
16.
17.
The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 μM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.  相似文献   
18.
The natural habitats of microbes are typically spatially structured with limited resources, so opportunities for unconstrained, balanced growth are rare. In these habitats, selection should favor microbes that are able to use resources most efficiently, that is, microbes that produce the most progeny per unit of resource consumed. On the basis of this assertion, we propose that selection for efficiency is a primary driver of the composition of microbial communities. In this article, we review how the quality and quantity of resources influence the efficiency of heterotrophic growth. A conceptual model proposing innate differences in growth efficiency between oligotrophic and copiotrophic microbes is also provided. We conclude that elucidation of the mechanisms underlying efficient growth will enhance our understanding of the selective pressures shaping microbes and will improve our capacity to manage microbial communities effectively.  相似文献   
19.

Abdominal aortic aneurysm is a prevalent cardiovascular disease with high mortality rates. The mechanical response of the arterial wall relies on the organizational and structural behavior of its microstructural components, and thus, a detailed understanding of the microscopic mechanical response of the arterial wall layers at loads ranging up to rupture is necessary to improve diagnostic techniques and possibly treatments. Following the common notion that adventitia is the ultimate barrier at loads close to rupture, in the present study, a finite element model of adventitial collagen network was developed to study the mechanical state at the fiber level under uniaxial loading. Image stacks of the rabbit carotid adventitial tissue at rest and under uniaxial tension obtained using multi-photon microscopy were used in this study, as well as the force–displacement curves obtained from previously published experiments. Morphological parameters like fiber orientation distribution, waviness, and volume fraction were extracted for one sample from the confocal image stacks. An inverse random sampling approach combined with a random walk algorithm was employed to reconstruct the collagen network for numerical simulation. The model was then verified using experimental stress–stretch curves. The model shows the remarkable capacity of collagen fibers to uncrimp and reorient in the loading direction. These results further show that at high stretches, collagen network behaves in a highly non-affine manner, which was quantified for each sample. A comprehensive parameter study to understand the relationship between structural parameters and their influence on mechanical behavior is presented. Through this study, the model was used to conclude important structure–function relationships that control the mechanical response. Our results also show that at loads close to rupture, the probability of failure occurring at the fiber level is up to 2%. Uncertainties in usually employed rupture risk indicators and the stochastic nature of the event of rupture combined with limited knowledge on the microscopic determinants motivate the development of such an analysis. Moreover, this study will advance the study of coupling microscopic mechanisms to rupture of the artery as a whole.

  相似文献   
20.
Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function   总被引:12,自引:0,他引:12  
Yedavalli VS  Neuveut C  Chi YH  Kleiman L  Jeang KT 《Cell》2004,119(3):381-392
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号