首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
  107篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   9篇
  2012年   4篇
  2011年   1篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   10篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
71.
Polymeric scaffolds comprising two size scales of microfibers and submicron fibers can better support three-dimensional (3D) cell growth in tissue engineering, making them an important class of healthcare material. However, a major manufacturing barrier hampers their translation into wider practical use: scalability. Traditional production of two-scale scaffolds by electrospinning is slow and costly. For day-to-day cell cultures, the scaffolds need to be affordable, made in high yield to drive down cost. Combining expertise from academia and industry from the United Kingdom and United States, this study uses a new series of high-yield, low-cost scaffolds made by shear spinning for tissue engineering. The scaffolds comprise interwoven submicron fibers and microfibers throughout as observed under scanning electron microscopy and demonstrate good capability to support cell culturing for tumor modeling. Three model human cancer cell lines (HEK293, A549 and MCF-7) with stable expression of GFP were cultured in the scaffolds and found to exhibit efficient cell attachment and sustained 3D growth and proliferation for 30 days. Cryosection and multiphoton fluorescence microscopy confirmed the formation of compact 3D cell clusters throughout the scaffolds. In addition, comparative growth curves of 2D and 3D cultures show significant cell-type-dependent differences. This work applies high-yield shear-spun scaffolds in mammalian tissue engineering and brings practical, affordable applications of multiscale scaffolds closer to reality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2750, 2019.  相似文献   
72.
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53‐mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53‐mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non‐centrosomal protein SMC5 is also TP53‐dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.  相似文献   
73.
The name, gentian, appeared about 1880. Immediately following its discovery in 1861, this violet dye was known as Violet de Paris or as methyl violet. Initially used as a textile dye, it was soon used to color virtually anything. The names and identity of the components, the varying modes of manufacture, analytical methods and the dye’s significant contribution to biological staining are discussed here. Finally, I discuss the dye’s declining medical use following the revelation of its toxic nature.  相似文献   
74.

Background  

Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model.  相似文献   
75.

Background  

Mass spectrometry is increasingly being used to discover proteins or protein profiles associated with disease. Experimental design of mass-spectrometry studies has come under close scrutiny and the importance of strict protocols for sample collection is now understood. However, the question of how best to process the large quantities of data generated is still unanswered. Main challenges for the analysis are the choice of proper pre-processing and classification methods. While these two issues have been investigated in isolation, we propose to use the classification of patient samples as a clinically relevant benchmark for the evaluation of pre-processing methods.  相似文献   
76.
Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defenses can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by larvae of the beetle Diabrotica virgifera virgifera induced shoot resistance against herbivores and pathogens. Root herbivory also enhanced aboveground DIMBOA and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with plant stress resistance. Interestingly, the plant hormone abscisic acid (ABA) emerged as a putative long-distance signal in the regulation of these systemic defenses. In this addendum, we have investigated the role of root-derived ABA in aboveground regulation of DIMBOA and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. Furthermore, we discuss the relevance of ABA in relation to defense against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, causing augmented induction of this compound after subsequent shoot attack by S. littoralis caterpillars. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defenses during belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, our results also suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis.Key words: induced resistance, Spodoptera littoralis, Zea mays, Diabrotica virgifera, DIMBOA, chlorogenic acid, absisic acid, priming  相似文献   
77.

Background  

Multi-locus sequence typing (MLST) is a method of typing that facilitates the discrimination of microbial isolates by comparing the sequences of housekeeping gene fragments. The mlstdbNet software enables the implementation of distributed web-accessible MLST databases that can be linked widely over the Internet.  相似文献   
78.
Culturing airway epithelial cells with most of the apical media removed (air-liquid interface) has been shown to enhance cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretory current. Thus we hypothesized that cellular oxygenation may modulate CFTR expression. We tested this notion using type I Madin-Darby canine kidney cells that endogenously express low levels of CFTR. Growing monolayers of these cells for 4 to 5 days with an air-liquid interface caused a 50-fold increase in forskolin-stimulated Cl(-) current, compared with conventional (submerged) controls. Assaying for possible changes in CFTR by immunoprecipitation and immunocytochemical localization revealed that CFTR appeared as an immature 140-kDa form intracellularly in conventional cultures. In contrast, monolayers grown with an air-liquid interface possessed more CFTR protein, accompanied by increases toward the mature 170-kDa form and apical membrane staining. Culturing submerged monolayers with 95% O(2) produced similar improvements in Cl(-) current and CFTR protein as air-liquid interface culture, while increasing PO(2) from 2.5% to 20% in air-liquid interface cultures yielded graded enhancements. Together, our data indicate that improved cellular oxygenation can increase endogenous CFTR maturation and/or trafficking.  相似文献   
79.
In A549 cell culture, significant variability was found in sensitivity to actinomycin D. Using limiting dilution, actinomycin D-susceptible (G4S) and -resistant (D3R) subclones were isolated. G4S cells were also susceptible to protein synthesis inhibitors, a redox cycling quinone, and an electrophile with concomitant activation of caspases 3 and 9. D3R cells were resistant to these agents without caspase activation. Antioxidant profiles revealed that D3R cells had significantly higher glutathione and glutathione reductase activity but markedly lower catalase, glutathione peroxidase, and aldehyde reductase activities than G4S cells. Thus A549 cells contain at least two distinct subpopulations with respect to predisposition to cell death and antioxidant profile. Because sensitivities to agents and the antioxidant profile were inconsistent, mechanisms independent of antioxidants, including the apparent inability to activate caspases in D3R cells, may play an important role. Regardless, the results suggest that antioxidant profiles of asymmetrical cell populations cannot predict sensitivity to oxidants and warn that the use of single subclones is advisable for mechanistic studies using A549 or other unstable cell lines.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号