首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   120篇
  2022年   4篇
  2021年   9篇
  2019年   3篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   13篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2007年   12篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   9篇
  2001年   12篇
  2000年   15篇
  1999年   19篇
  1998年   19篇
  1997年   12篇
  1996年   22篇
  1995年   18篇
  1994年   7篇
  1993年   11篇
  1992年   23篇
  1991年   40篇
  1990年   22篇
  1989年   13篇
  1988年   19篇
  1987年   12篇
  1986年   2篇
  1985年   8篇
  1984年   13篇
  1983年   9篇
  1982年   14篇
  1981年   7篇
  1980年   11篇
  1978年   4篇
  1977年   8篇
  1976年   4篇
  1975年   2篇
  1974年   9篇
  1973年   6篇
  1972年   8篇
  1971年   2篇
  1966年   3篇
排序方式: 共有511条查询结果,搜索用时 31 毫秒
51.
The processing of secretory preproteins by signal peptidases (SPases) is essential for cell viability. As previously shown for Bacillus subtilis, only certain SPases of organisms containing multiple paralogous SPases are essential. This allows a distinction between SPases that are of major and minor importance for cell viability. Notably, the functional difference between major and minor SPases is not reflected clearly in sequence alignments. Here, we have successfully used molecular phylogeny to predict major and minor SPases. The results were verified with SPases from various bacilli. As predicted, the latter enzymes behaved as major or minor SPases when expressed in B. subtilis. Strikingly, molecular modeling indicated that the active site geometry is not a critical parameter for the classification of major and minor Bacillus SPases. Even though the substrate binding site of the minor SPase SipV is smaller than that of other known SPases, SipV could be converted into a major SPase without changing this site. Instead, replacement of amino-terminal residues of SipV with corresponding residues of the major SPase SipS was sufficient for conversion of SipV into a major SPase. This suggests that differences between major and minor SPases are based on activities other than substrate cleavage site selection.  相似文献   
52.
Many non-lantibiotic bacteriocins of lactic acid bacteria are produced as precursors with N-terminal leader peptides different from those present in preproteins exported by the general sec-dependent (type II) secretion pathway. These bacteriocins utilize a dedicated (type I) secretion system for externalization. The secretion apparatus for the lactococcins A, B, and M/N (LcnA, B, and M/N) from Lactococcus lactis is composed of the two membrane proteins LcnC and LcnD. LcnC belongs to the ATP-binding cassette transporters, whereas LcnD is a protein with similarities to other accessory proteins of type I secretion systems. This paper shows that the N-terminal part of LcnC is involved in the processing of the precursor of LcnA. By making translational fusions of LcnC to the reporter proteins beta-galactosidase (LacZ) and alkaline phosphatase (PhoA*), it was shown that both the N- and C-terminal parts of LcnC are located in the cytoplasm. As the N terminus of LcnC is required for LcnA maturation and is localized in the cytoplasm, we conclude that the processing of the bacteriocin LcnA to its mature form takes place at the cytosolic side of the cytoplasmic membrane.  相似文献   
53.
Soluble guanylate cyclase (sGC) is an important downstream intracellular target of nitric oxide (NO) that is produced by endothelial NO synthase (eNOS) and inducible NO synthase (iNOS). In this study, we demonstrate that sGC exists in a complex with eNOS and heat shock protein 90 (HSP90) in aortic endothelial cells. In addition, we show that in aortic smooth muscle cells, sGC forms a complex with HSP90. Formation of the sGC/eNOS/HSP90 complex is increased in response to eNOS-activating agonists in a manner that depends on HSP90 activity. In vitro binding assays with glutathione S-transferase fusion proteins that contain the alpha- or beta-subunit of sGC show that the sGC beta-subunit interacts directly with HSP90 and indirectly with eNOS. Confocal immunofluorescent studies confirm the subcellular colocalization of sGC and HSP90 in both endothelial and smooth muscle cells. Complex formation of sGC with HSP90 facilitates responses to NO donors in cultured cells (cGMP accumulation) as well as in anesthetized rats (hypotension). These complexes likely function to stabilize sGC as well as to provide directed intracellular transfer of NO from NOS to sGC, thus preventing inactivation of NO by superoxide anion and formation of peroxynitrite, which is a toxic molecule that has been implicated in the pathology of several vascular diseases.  相似文献   
54.
55.
Soluble forms of Bacillus signal peptidases which lack their unique amino-terminal membrane anchor are prone to degradation, which precludes their high-level production in the cytoplasm of Escherichia coli. Here, we show that the degradation of soluble forms of the Bacillus signal peptidase SipS is largely due to self-cleavage. First, catalytically inactive soluble forms of this signal peptidase were not prone to degradation; in fact, these mutant proteins were produced at very high levels in E. coli. Second, the purified active soluble form of SipS displayed self-cleavage in vitro. Third, as determined by N-terminal sequencing, at least one of the sites of self-cleavage (between Ser15 and Met16 of the truncated enzyme) strongly resembles a typical signal peptidase cleavage site. Self-cleavage at the latter position results in complete inactivation of the enzyme, as Ser15 forms a catalytic dyad with Lys55. Ironically, self-cleavage between Ser15 and Met16 cannot be prevented by mutagenesis of Gly13 and Ser15, which conform to the -1, -3 rule for signal peptidase recognition, because these residues are critical for signal peptidase activity.  相似文献   
56.
Type I signal peptidases (SPases) are required for the removal of signal peptides from translocated proteins and, subsequently, release of the mature protein from the trans side of the membrane. Interestingly, prokaryotic (P-type) and endoplasmic reticular (ER-type) SPases are functionally equivalent, but structurally quite different, forming two distinct SPase families that share only few conserved residues. P-type SPases were, so far, exclusively identified in eubacteria and organelles, whereas ER-type SPases were found in the three kingdoms of life. Strikingly, the presence of ER-type SPases appears to be limited to sporulating Gram-positive eubacteria. The present studies were aimed at the identification of potential active site residues of the ER-type SPase SipW of Bacillus subtilis, which is required for processing of the spore-associated protein TasA. Conserved serine, histidine, and aspartic acid residues are critical for SipW activity, suggesting that the ER-type SPases employ a Ser-His-Asp catalytic triad or, alternatively, a Ser-His catalytic dyad. In contrast, the P-type SPases employ a Ser-Lys catalytic dyad (Paetzel, M., Dalbey, R. E., and Strynadka, N. C. J. (1998) Nature 396, 186-190). Notably, catalytic activity of SipW was not only essential for pre-TasA processing, but also for the incorporation of mature TasA into spores.  相似文献   
57.
The members of the M4 peptidase family are involved in processes as diverse as pathogenicity and industrial applications. For the first time a number of M4 family members, also known as thermolysin-like proteases, has been characterized with an identical substrate set and a uniform set of assay conditions. Characterization with peptide substrates as well as high performance liquid chromatography analysis of beta-casein digests shows that the M4 family is a homogeneous family in terms of catalysis, even though there is a significant degree of amino acid sequence variation. The results of this study show that differences in substrate specificity within the M4 family do not correlate with overall sequence differences but depend on a small number of identifiable amino acids. Indeed, molecular modeling followed by site-directed mutagenesis of one of the substrate binding pocket residues of the thermolysin-like proteases of Bacillus stearothermophilus converted the catalytic characteristics of this variant into that of thermolysin.  相似文献   
58.
59.
The neutral theory of molecular evolution predicts that the ratio of polymorphisms to fixed differences should be fairly uniform across a region of DNA sequence. Significant heterogeneity in this ratio can indicate the effects of balancing selection, selective sweeps, mildly deleterious mutations, or background selection. Comparing an observed heterogeneity statistic with simulations of the heterogeneity resulting from random phylogenetic and sampling variation provides a test of the statistical significance of the observed pattern. When simulated data sets containing heterogeneity in the polymorphism-to-divergence ratio are examined, different statistics are most powerful for detecting different patterns of heterogeneity. The number of runs is most powerful for detecting patterns containing several peaks of polymorphism; the Kolmogorov-Smirnov statistic is most powerful for detecting patterns in which one end of the gene has high polymorphism and the other end has low polymorphism; and a newly developed statistic, the mean sliding G statistic, is most powerful for detecting patterns containing one or two peaks of polymorphism with reduced polymorphism on either side. Nine out of 27 genes from the Drosophila melanogaster subgroup exhibit heterogeneity that is significant under at least one of these three tests, with five of the nine remaining significant after a correction for multiple comparisons, suggesting that detectable evidence for the effects of some kind of selection is fairly common.   相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号